
1C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

The
Engineer’s
Survival GUIDE

Expert advice for handling
workload (and work-life) disasters

Written by Michelle Gienow
Illustrated by Giovanni Cruz

“Software engineering today is a race between
software engineers striving to build bigger and

better idiot-proof apps, and the universe striving to
produce bigger and better idiots.
So far, the universe is winning.”

– Rick Cook

Written by Michelle Gienow

Illustrated by Giovanni Cruz

The
Engineer’s
Survival GUIDE

Expert advice for handling
workload (and work-life) disasters

The Engineer’s Survival Guide: Expert advice for handling workload (and work-life) disasters

Written by Michelle Gienow
Illustrated by Giovanni Cruz

Copyright © 2023 Cockroach Labs, Inc.
Published by Cockroach Labs, 125 25th Street, 11th Fl, New York, NY 10001
www.cockroachlabs.com

Editors: Jessica Edwards, Dan Kelly			
Copyeditors: Alex Kimball, Steven Lichtenstein	
Contributors: Dan Kelly, Andrew Marshall		

October 2023: First edition

The CockroachDB and Cockroach Labs logos are registered trademarks of Cockroach Labs, Inc.
The Engineer’s Survival Guide: Expert advice for handling workload (and work-life) disasters,
the cover image, and related trade dress are trademarks of Cockroach Labs, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s
views. While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including without limitation responsibility
for damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology
this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and rights.

Project manager: Irina Sapsay	
Designer: Giovanni Cruz
Legal counsel: Ruchi Shah

Warning

Are your hands tangled in back-end spaghetti courtesy of
the startup you acquired? Did management really just
tell you to use AI instead of hiring a human? WHAT DO
YOU MEAN WE’VE BEEN FINED FOR VIOLATING
EUROPEAN DATA PRIVACY LAWS — WE DON’T
EVEN DO BUSINESS THERE!!!

When a dire situation is at hand, sensible solutions may
not be immediately apparent. Because sh*t happens (and,
at scale, sh*t is always happening) we asked subject matter
experts for guidance. Whether the disaster response is
directed confidently from across your desk or while hiding
underneath it, this book provides an initial roadmap for what
to do in a given moment of crisis. The details of how to do it,
though, are entirely up to you. Every organization and every
application are different, and we wouldn’t dream of dictating
your workloads or your work life.

To deal with the worst-case scenarios presented in this book,
we highly recommend (actually, we insist) that you carefully
evaluate the situation before you act, and that you act within
the boundaries of legality, vendor agreements, and physics
itself. Breaking your app is one thing; breaking the law is
another thing entirely.

Here’s the part our Legal team makes us say out loud: the
authors, the experts, and Cockroach Labs do not have any
liability for any harm or injury (physical or mental) that
could occur by using the information in this guide. We do
not claim that the guidance offered in this book is complete
or accurate for your specific situations. Moreover, it should
never supersede your own judgment and common sense —
which can be a challenge in crisis moments when stakeholders
and incident management teams are running around
screaming and everything is on fire and you worry that all
the engineering blood, sweat, and tears in the world won’t be
enough to extinguish the <clusterfail>.

Stay calm. If you can keep your head when everyone around
you is losing theirs, you and your app will survive to deploy
another day.

8

#Acknowledgments
Many technical brains were picked to produce the guidance
presented in this, well, guide. Senior subject matter experts from
all across the tech sector and all around the planet contributed
their insights and lessons learned from surviving their own
technical disasters. Names have been redacted to protect the
innocent (and to protect the author from years of putting
requests through Corp Comms permission chains).

Director of Global Infrastructure, Fortune 50 Financial Services
Mysterious monoliths frighten me.

Senior Cloud Architect, SaaS IoT
Tired of playing babysitter to Sh*tOps.

Director of Distributed Tech Ops, Retail
Been there. Broke that.

VP of Application Development, Gaming
That is one crazy idea. Let’s do a PoC.

Senior Engineer, Aviation & Aerospace
It works in my container ¯_(ツ)_/¯

SVP & Head of Technology, Retail
No, I can’t fix the printer. I’m an engineer, not a magician.

Principal Cloud Architect, Logistics
JUST >SUDO IT

Application Modernization Engineer, IaaS / Cloud Service Provider
I didn’t choose the bug life. It chose me.

Table of contents
Chapter 1: Surviving your job (#HugOps)	

What to do when your CEO wants to “hire” a bot	

How to bail a developer out of jail	

How to survive a delusional delivery date	

How to survive a swarm of Swifties	

How to dig out of (someone else’s) technical debt	

How to indulge in free snacks and still fit into your work pants	

True tales of survival: 20 years of server solitude	

Chapter 2: Surviving the workplace	

How to survive a “blameless post-mortem” when it’s actually your fault	

What to do when your rubber ducky debugging buddy goes missing	

How to help your team break up with bad tech	

How to lure your team back into the office without inciting a mutiny	

How to survive a meeting that should have been an email	

True tales of survival: Surviving a hurricane with a bucket brigade	

Chapter 3: Surviving the future	

How to survive a Kaiju attack on your data center	

How to save your company $1 billion (no, really)	

How to protect your ass(ets) from AI attacks	

How to duct tape a shattered single pane of glass	

How to build an emergency life support system for a legacy app	

How to justify blowing up your tech stack while playing a round of golf	

10

11

15

19

23

27

31

34

35

36

39

42

46

51

55

57

58

61

65

69

73

76

1 0C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Surviving your
job (#HugOps)

Them: It’s not DNS. There is no way it’s DNS.

Narrator: It was DNS.

Chapter

1

1 1C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

What to do when
your CEO wants to
“hire” a bot

Programmers consult Stack Overflow for help with code so
often that it’s practically a staff engineer on many projects —
which isn’t quite the same as making AI an actual tech team
member. Now, though, your hiring budget’s being slashed and
your CEO is telling you that ChatGPT is “just as good” as
another engineering hire.

Here’s how to get useful work out of generative AI tools until
you can (hopefully) hire a human.

Treat AI like it’s a junior engineer.
AI happens to hold the knowledge of the entire internet.
Despite this, generative AI needs explicit and detailed
instructions to do anything useful — and its output
requires careful review and refactoring, and sometimes even
re-refactoring.

1 2C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

In other words, working with AI is just like working with
a junior engineer…one that can’t accidentally delete the
production database.

You’ll get the most out of this virtual AI “team member”
by using it for tasks that: (1) you would feel confident
assigning to a very new or junior engineer; and (2) where it
can’t screw up anything truly important.

Bring on the boilerplate.
Any grab-a-code-snippet-from-Stack-Overflow instance
is exactly when you could ask ChatGPT to generate code
instead. Be explicit and give lots of details on what you need
the code to do and how you want it done, just as you would
with a n00b programmer.

Welcome to
the team!

1 3C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Unlike humans, generative AI typically gets syntax right the first
time, which at least saves you time chasing down compile-time
and runtime errors.

Also: AI is great at regex. Just saying.

Try, try again.
If your AI-generated code hits any errors, feed them back in
as the next prompt. The bot will then tell you how to fix the
bug. Some will even apologize nicely for getting it wrong.

This works great in reverse, too: hand the bot any bugs from
code you’ve written and it will return an explanation, plus a
(usually) good fix.

Ask it “What does this do?”
Another tedious task perfect for handing off to AI is finding
out what a block of code that you didn’t write does. This also
works for code that you did write, intending to come back and
comment later. (Narrator: This never happened.)

Rather than wasting time puzzling through mystery code, just
feed it in and let the bot tell you what it does.

1 4C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Save time on tricky functions.
Of course you’re capable of writing recursive functions or
multiple nested loops. But these kinds of problems carry a
heavy cognitive load. AI generates solidly average code that
you can refactor and modularize as needed in just a few
minutes. This gives you more time and focus to invest in
architecture, strategy, and business requirements — all places
where AI can’t provide meaningful help (yet).

Oh, and be sure to ask the bot to take care of the code
commenting, too.

Mind the fine print.
ChatGPT and generative AI tools potentially own the copyright
to any code they generate. Are you inappropriately incorporating
copyrighted code into your product? Is that a problem? Have you
popped into the #Legal Slack channel lately?

Unlike humans, generative AI typically
gets syntax right the first time, which
at least saves you time chasing down
compile-time and runtime errors.

1 5C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

How to bail a
developer out of jail

For whatever reason, this person is a human point of failure
for a system or service crucial to your business. Maybe you
went with “buy” over “build” for a critical solution but
then made a single person responsible for integrating and
managing it. Maybe this is the last remaining person from
the team responsible for manually sharding your database,
but now another team has pushed an update that brought
everything crashing down, and only the developer knows all
the places where the application data logic bodies are buried,
figuratively speaking. (Or perhaps even literally. Could that
be why they’re in jail?)

Yadda, yadda, hero culture bad, but A Very Important Thing is
down and only one human in your organization can fix it fast,
if at all. Unfortunately, that human is currently enjoying the
hospitality of your local law enforcement agency.

How do you get Bus Factor One out of jail and logged back
in to GitHub right now?

1 6C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

GET OUT OF
JAIL FREE(ISH)
Keep this card until you can take a screenshot of it.

Find out about arraignment ASAP.
After arrest, a person is either released or jailed. If they’re in
the slammer (like your Single Point of Failure friend), they’ll
need to be arraigned before a judge to determine the bail or
whether they’re released on their own recognizance.

Warning: On weekends or holidays, it could take
several days to schedule arraignment.

Learn their booking status.
No matter what mischief or mischance has landed them in
the pokey, your unicorn can’t make bail until they’ve finished
going through booking (i.e., fingerprinting, photographing,
and intake paperwork).

Many jurisdictions offer real-time online information on
the status of people being held in jail, including location
and booking status.





1 7C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Make a plan for paying bail.
Once bail is set, they can post a bond to leave jail pending trial.
You can either pay cash or post bond to spring your jailbird
genius. If it’s a high-dollar figure (what the heck did they do!?),
you can make arrangements with a bail bondsperson.

[Optional] Find a bail bondsperson.
There are typically a few 24-hour bail bonds companies
surrounding the jail or court in every city. They’ll put up
money to fulfill the bail requirement, charging a percentage of
the total bail as their fee (typically, 10–15 percent).

It’s often less expensive overall to just pay the bail up front, if
you can manage it. (Getting your developer back to work could
qualify as a business expense. Don’t forget to ask for a receipt.)

Post bail at the arraignment.
Being able to post bond directly after arraignment is the
quickest route to getting your developer out of court and
logged back in to GitHub. Bring either the bondsperson or
your checkbook.

Go plastic: More courts now accept credit cards and even
EFT payments for bail, fees, and fines. Might as well get
those airline miles.



1 8C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)



Arrange a ride.
Your human point of failure will be released from the holding
facility carrying only what they had on them when arrested.
They’ll appreciate having a way to get home since their phone
died hours ago and they can’t summon a Lyft.

Feed the beast: If you’re taking them directly to the
office, definitely make a food stop along the way.
They’ve had a really long day already and, well, the less
said about jail food the better.

Start upping your bus factor.
You absolutely need to start a knowledge transfer plan RIGHT
NOW. Real talk: this single-point-of-failure situation should never
have happened in the first place.

The most valuable knowledge often resides in people’s heads
and is tricky to transfer. It’s one thing to know what the code
does, but quite another to understand where the hidden trap
doors are. Enable live onsite training to cover development, QA,
staging, and production environments. Record these sessions
and save them in a secure repository for future reference.

1 9C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

How to survive a
delusional delivery date

Anyone who’s been in tech for more than ten minutes has
almost certainly been in the unfortunate position of being
handed a project with an absurdly short timeline (often
accompanied by an absurdly tiny budget). If you haven’t, well,
your time will come.

There’s no easy solution to this dilemma, but there are at
least a few tactics that can help you survive the experience
without hurling your mechanical keyboard through the
nearest window.

Don’t fight the power.
First, no matter what Chuck D and Flava Flav say, don’t fight
the assignment or its parameters head on. The likelihood of
actually changing any element of this charlie foxtrot equation
through direct argument, no matter how logical, is realistically
zero. Doing so will (definitely) waste time and (probably) get
you labeled as a malcontent.

2 0C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Make a counter offer.
Use the time you’ve saved to create an alternative project
scenario that’s within human capacity to actually pull off.

Begin with some truth telling. Point out that meeting the
deadline as is will require more headcount, a bigger budget, and
maybe even a contractor or two. Make a strong case and you
never know — you might even get a yes. <Cries in DevOps>

Now that you have their attention, present your preferred
alternative solution:

THIS IS FINE.

2 1

Option #1: Same project, only with a more realistic
timeline and budget. Explain that, based on your
experience and given the resources in place, this is how
long you anticipate the project will actually take to
complete.

Option #2: Perhaps an iterative solution would satisfy
the need for speed? Suggest deploying a Minimum Viable
Product (MVP) to meet the initial deadline, explaining
you can then iterate forward until the outcome delights
your users – and your bosses. If, after this, the powers
continue to insist on a delusional delivery timeline...well,
at least you tried.

Obey the laws of physics.
Don’t overstress yourself and your team attempting to warp
the space / time continuum to meet a ridiculous deadline. The
fact that this delivery timeline is untethered to objective reality
is not your fault.

Avoid heroics: If sustainable, though, occasionally
working a few extra hours — especially when milestones
are approaching or if any piece of the project seems
actually achievable — is a strategy to consider. The
goal is to demonstrate I recognize the deadline and am
working to meet it while not burning out. Slow and







C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

2 2C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

steady (with an occasional curse mumbled under your
breath) wins the race.

Beat them at their own game.
Is it possible that leadership is playing a mind game based on
Parkinson’s Law (“All work expands to fill the time allotted for
its completion”)? Perhaps setting a ludicrously short deadline
is a misguided attempt to spur productivity.

Even if not, they surely anticipate that delays will occur. So
when time grows short, they’ll throw on another 3–6 months to
the deadline without issue.

Perhaps some unhappy noises will be made, but the project
will be extended and life will go on.

Don’t overstress yourself and your
team attempting to warp the
space-time continuum to meet a
ridiculous deadline. The fact that
this delivery timeline is untethered
to objective reality is not your fault.

2 3C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

How to survive a
swarm of Swifties

In late 2022, Ticketmaster made global headlines (not the
good kind) after a major system meltdown when tickets for
Taylor Swift’s Eras tour went on sale. Response from her
fandom — with a population and economic influence large
enough to qualify for its own seat in the United Nations —
crashed the ticket sales platform under the sheer weight of
demand. The backlash was fierce: frustrated fans vented their
fury live on social media, members of Congress discussed
opening an antitrust investigation into Ticketmaster’s alleged
monopolistic behavior, and vengeful Swifties quickly filed a
class-action lawsuit.

2 4

The truth is, this isn’t the first large company to experience such
a brutally public system failure — and, so long as businesses
rely on technology, it certainly won’t be the last. The Swifties
schooled every business in the world on an important lesson:
You screw up an experience like this, it’s dangerous.

So what can enterprises learn from the TayTay-Ticketmaster
meltdown to help prevent their own epic public facepalm?

There’s no such thing as “unprecedented demand.”
When a meltdown of this size and seriousness hits, companies
typically claim, “There was unprecedented demand on our
system!” Sorry, but you’re the problem. It’s you.

No matter what goods or services your company slings, your
entire reason for existing is to meet customer demand. So do what
you need to meet it.

Scaling during an emergency is not a strategy.
The Ticketmaster disaster (Taylor’s version) is but another
object lesson in capacity planning: Don’t wait until a surge
event to figure out how much traffic is too much traffic.

C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

2 5C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Building scalable systems that can handle spiky workloads
requires considered planning, not just a vague notion to simply
throw money at more servers in the event you unexpectedly hit
number one in the App Store.

Choosing inherently scalable application architecture,
components, and services requires careful consideration of the
infrastructure, caching layers, APIs, database, and more.

Put the right pieces together: Doing it in the right way
will automatically distribute even the largest of loads,
allowing your app to simply shake it off.

Uncork bottlenecks.
Common capacity planning means bracing for a threshold of
10x your current or projected peak throughput (cough, load
testing, cough). Ticketmaster reported being “hit with three
times the amount of bot traffic than we had ever experienced”
during the peak Swiftie Swarm. Assuming the company had
10x planning in place, a failure at 3x indicates their system
could have an unrecognized bottleneck that caused cascading
failures throughout the system when 14 million users (both
humans and bots) all tried to squeeze through the same door
at the same time.



2 6C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

 Learn from Ticketmaster’s pain: Unrecognized
bottlenecks are, of course, A Bad Thing. Plan for, test,
and recognize them before they become a problem.

Embrace the chaos (engineering).
Surge events increase the likelihood of any back-end service
experiencing a possible degradation or outage for many
reasons, including flooded network capacity, spiked CPU,
or storage quota exceeded.

Using chaos engineering pushes teams to deal with forced
system failures. These unpredictable worst-case scenario drills
expose weaknesses (see above) and provide a disaster response
experience that helps decrease RTO1 in the event of a
real-world SHTF2 event.

Build a time machine.
If a massive outage strikes your product / service / platform
before you ever got around to meaningful capacity planning
or updating your disaster recovery plan, well…your best
(and honestly only) option for preventing the inevitable public
outpouring of user outrage would be a sudden breakthrough
in time travel technology.

1 Recovery Time Objective, the goal your organization sets for the maximum length of
time it should take to restore normal operations in the event of an outage or data loss.
2 A catastrophic event; when the “sh*t hits the fan.”

2 7

How to dig out of
(someone else’s)
technical debt

It’s the age-old story: you need a new feature so you can
continue crushing competitors and keep users. You find a
smaller company providing exactly that solution, and they’re
ripe for acquisition. You both swipe right, expecting to live
happily ever after.

The ink is barely dry on the contract, though, when you discover
that the seemingly solid tech that passed your code smell testing
actually has considerable junk in the technical trunk.

There are millions of possible technical debt nightmares.
Some are easily spotted (massive God-class abstractions with
names like driver_manager_system_sub_v242_final_final2_
REALLYFINAL). The worst come with hidden third-rail boobytraps
(touch them and something dies). But all are recognizable by
the fact that their continued existence slows you down, hurts
development, and ultimately costs the business money.

C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

2 8

What’s the best way to shave this yak, pronto, and keep your
super-fast TTM dreams alive?

Stop adding new stuff.
It’s tempting to immediately throw technology at the worst
/ most obvious problems, but more tools aren’t going fix the
situation until you know what the full situation actually *is* —
and how much sauce you’re going to need for all that spaghetti.

Make a list, check it twice.
Sing along! Gotta find out what’s naughty or nice…

First, procure an accurate and detailed accounting of
current technical debt. That includes document assets,
data, and their importance to the reason you acquired

them in the first place.

Next, track for code quality, code coverage,
velocity rates, defect rates, and defect
resolution rates (among a billion other things).
This helps you figure out just how deep the
heap of <bleep> you’ve gotten yourself into
is. Nobody said this was going to be fun.

Now you have enough





2 9

data to identify the initiatives that will have the most
impact, prioritize them, and then make accurate
allocations and create realistic budgets and timelines.

With those in hand, develop a simple-to-read tech 	
debt balance sheet that anyone whose job title begins
with the letter “C” will recognize. This helps you to
simplify the tradeoffs and build your strategy. It helps
even more with getting the budget you’re going to need.

Identify the biggest losers.
Not all technical debt is created equal. This is a good thing.
Research from McKinsey shows there are typically 10–15 assets
that account for the majority of the tech debt in an enterprise.

At the same time, the amount of tech debt between
applications can vary by as much as two to three times. For
example, one major tech company with more than 50 major
legacy apps went hunting for tech debt and discovered that
just four apps were driving 50–60 percent of the overall load.

Isn’t it great when priorities set themselves?

Knock it off.
Some orgs benefit by dedicating whole sprints to fixing
high-priority technical debt issues. Others set timelines for





C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

3 0C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

solving specific issues and then distribute the work among
teams to be done alongside run-of-business work.

Choose your own adventure: Or even mix and match
according to how urgent an issue may be and how much
bandwidth your teams (both old / existing and new /
acquired) have available to tackle it.

Stop, look, and listen.
Trust your developers when they say it will take a certain
amount of time to complete a given migration or remediation
properly. Don’t set unrealistic deadlines, because sacrifices will
be made. You’re already fixing years of slapdash workarounds
and quickie one-off solutions that favored speed over long-term
performance — don’t go creating brand-new technical debt
while fixing the existing.

Like Kyle Simpson said: “There’s nothing more permanent
than a temporary hack.”

Leave it alone.
More good news: in some cases, the cost of addressing the
technical debt of a given asset is simply not worth it. Cross it off
your list *after* explaining to your team(s) why it’s better to just
learn to live with this one. Then maybe buy them some pizza.



3 1

How to indulge in free
snacks and still fit
into your work pants

Abundant free treats are one of the great things about being
in tech. We work long hours solving hard problems. We build
the technology that runs the world. We deserve snacks!

The rise of remote work hasn’t altered the nonstop feed-your-
face phenomenon one iota. Why would it? When engineers
are in the zone with focus work, concepts like “lunch” and
“dinner” become but mere abstractions. But snacks? Snacks
are always with us, convenient food-to-face fuel that doesn’t
require moving our steady gaze away from the screen.

Peanut butter-filled pretzels. Chocolate chip cookies. Treats of
every flavor, shape, texture, and style. Unless you have iron
willpower, chances are you won’t be reaching for the carrot
sticks, which is how snacks can become too much of a good
thing. Your New Year’s fitness resolutions never stood a chance
and it’s starting to look like your waistband won’t, either.

C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

3 2C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

If this sounds all too familiar, here are some helpful guidelines
for maintaining a healthy snack-life balance.

Don’t keep snacks at your desk.
Nope, not even mixed nuts with their high protein and
healthy fats. Even when it’s a snack that’s (kinda) good for
you, what’s not good is eating the entire package all at once.
Which is exactly what will happen if you keep them at
your desk. Stand over the sink and eat by the handful like a
responsible adult.

Get up and go for a walk.
You’re stuck on a hard problem, a stubborn bug, or maybe just
waiting for your code to compile, and you think to yourself,
Hmm, maybe those dark chocolate-covered raisins will help move
things along. Trust us, they won’t — so move yourself instead.

3 3

Shake it up: Get up and walk around. Drink a glass of
water. Touch grass. Pet a friendly animal, if available.3
Don’t worry: those exquisite morsels will still be waiting
as a reward for when you’re finished!

Start a snack abstinence competition.
It’s really hard to quit a hardcore snacking habit, especially
cold turkey. A little friendly competition among coworkers
can help the need for victory outweigh the need for Doritos.

Challenge a colleague: See how far into the day you
can get without being seduced by a bag of Cheetos or a
perfectly salty-sweet Kind bar. Start small: Can you make
it to 10 AM? Noon? Notice how much better you feel?
Good job! You’ve earned a snack.





3 Domestic animals, please. Your own, preferably. Consent is required. Do not harass
or pursue any wild creatures, like squirrels, trying to sneak a pet; sure, they look fluffy
and cute, but nature gave them teeth and claws for a reason.

Unless you have iron willpower, chances
are you won’t be reaching for the carrot
sticks, which is how snacks can become
too much of a good thing.

C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

3 4C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Make a new rule every day.
Gradual withdrawal from dependency is key to success here.
Why not also make it fun with a little gamification?

For example: On Monday you cannot, under any
circumstances, eat a chocolate snack. You can have as many
pita chips and hummus as you like. But no Hershey’s Kisses.
Tuesday, no refined carbs — it’s dried fruit and assorted nuts
all the way down.

And so on. See what you can eliminate as the week goes
along. Soon you’ll be existing solely on water and sunlight,
just like a plant.

Screw it.
Life’s too short, the snacks are too good, and the wax on that
little BabyBel cheese wheel ain’t gonna unwrap itself.

True tales of survival: 20 years of server solitude

I used to work for [redacted], a provider of IT production
and disaster recovery services. The company was spun from an
oil company that had experienced their own disaster. Over
time, the company grew to 45 data centers and data recovery
centers in five different countries.

At one point, leadership decided they wanted to consolidate
some of these different data centers. During the consolidation
project, we found an AS/400 server under somebody’s desk that
had apparently been running for 20 years.

No one had the slightest clue as to why it was there, what
it did, or how it had been left to just run on its own
for two decades. This actually held up the consolidation
initiative because we couldn’t unplug it until we knew what
it did! Was this server for the company? Was a customer
application running on this, or maybe someone’s database?
What did this thing even connect to?

Finally we just had to unplug it and wait to see what would happen.

Right after we unplugged it, some guy in Arizona emailed us
to say, “Hey, my website stopped working! What did you guys
do?” That was it. The only complaint.

To me, the funniest part is that we actually transported
this server to the new data center and plugged it again.
There was an RTO / RPO agreement with the customer and so we
had to make sure that it got plugged back in as soon as we
got the email.

That AS/400 is probably still there, chugging along into its
third decade, doing its one job.

— Alex Lichtenstein, Senior Staff Engineer

3 6C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Surviving the
workplace

“Friends don’t let friends
use us-east-1.”

– All of Reddit r/SoftwareEngineering

Chapter

2

3 7

How to survive a “blameless
post-mortem” when it’s
actually your fault

So, that thing that happened. You know, The Incident that
caused extended disruption for customers. Keyboards were
banged, swear words were used, stress balls were squeezed. But
everyone pulled together to fix the outage as fast as possible.
Now that everything is under control, it’s time for the public
shaming post-mortem.

Luckily for you, your company has adopted
Google’s “blameless post-mortem” model!

Instead of a criminal investigation, this
affirmative approach aims to uncover
lessons learned and identify changes
to avoid a duplicate future debacle.

The core assumption is that everyone
makes mistakes from time to time, and

the cause isn’t the person but the process.

But what should you do if it really was your fault?

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

IT WASN’T ME!

3 8

Own it.
Even though nobody’s allowed to point fingers, everyone
knows You Did It. So don’t make excuses. With shoulders
back and chin up, walk everyone through the timeline of
events and explain where things broke down. Spare no details:
the first step is to establish a clear and common understanding
of What Went Wrong.

Fix it.
Here’s where you transform from villain into hero. Because
you’re not the scapegoat — you’re the Error Expert!

First, analyze: What actions did you take? What effects
did you observe? What assumptions did you make?
Answering these questions will lead to the real work at
hand.
	
Then, remediation: Where did the processes break down
to allow this incident to happen in the first place? What
needs to change? What work can be done to prevent this
particular problem from happening again?

Share it.
Write down everything you learned and share the document
as widely as possible to make sure disaster never strikes again.
(This disaster, anyway.)





C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

3 9

What to do when your
rubber ducky debugging
buddy goes missing

Talking out loud to yourself at your desk can be cause for
alarm, but for some reason talking to a bath toy is just fine.
That’s likely because most techies appreciate the value of
rubber duck debugging, which explains why cute plastic ducks
are perennially popular in onboarding packages and tech
conference swag.

But if you just reached for your own adorable plastic debugging
pal and thought, Oh f*ck, where’s my duck???, there may have
been fowl play. Now what?

Look for a flock of ducks.
Perhaps your personal debugging ducky has been called upon
to assist with a major issue? Sometimes a single duck is not
enough and you need to borrow a neighbor’s duck to get more
ducks on the problem.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 0

A crisis-level fat fingers fiasco
may even require summoning
every duck in the office. Search
your surroundings to see if a
Council of Ducks has been
convened.

Make a P0 defect ticket in
Jira and assign it to everyone
on the team.
If you’re certain your lucky
buddy is the victim of a
nefarious ducknapper of

unknown identity, here’s a surefire way to get the whole
team in on the search.

Task: NCC-1701
Title: Find Mr. Quackers (aka Mark Duckerburg)

Description
As someone who works on this team
I need a certain colorful molded plastic duck returned to my desk
So that we can meet launch date in 3 weeks *with testing completed*
Because Mr. Quackers is an essential tool for me solving
blocking bugs w code issues.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 1

Acceptance Criteria

Mr. Quackers returns ASAP to his usual place under the
left monitor on my desk, unharmed.

No questions asked. 	

My job as test engineer on this project is to find bugs in
QA instead of customers finding them in production. IT
IS NOT A PERSONAL ATTACK ON YOUR CODE.

Also, stop stealing my Red Bull from the fridge.

Git blame.
If you do know the culprit’s identity, this tactic may not help
get the duck back immediately — but it will surely help you
feel better:

$ git blame-someone-else <author> <commit>









C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 2

How to help your
team break up with
bad tech

The frustration of being stuck with a terrible tool or slow-
moving service that makes our work harder is one of the
most common (and least fun) features of a career in tech. But
sometimes a solution is so incredibly bad, so maddeningly
wrong, that you feel you absolutely must do something. The
problem is that everyone else around you seems fine with the
status quo and there’s pushback when you suggest ways to fix
or improve things.

So, how can you roll this boulder on your own?

Get real: is this a needle you can realistically move?
In the immortal words of Kenny Rogers, “You gotta know
when to hold ‘em and know when to fold ‘em.” For example:
is your VPE firmly wedded to this particular piece of tech
dreck that drives you — but only you — batsh*t?

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 3

Your manager spends some of their own
power when fighting decisions

made higher up. They’ll
reserve that political capital
for when an issue is truly
important to them. A
single team member’s
desire to change to a
different technology
probably isn’t one of those

times to gamble.

Document, document, document.
Arm yourself with specific events and examples of when
and how this garbage tool broke, slowed down the team, or
created risk for the org.

Be data-driven: List the number of weekly hours
spent building workarounds because of this POS tech,
number of P0 and P1 issues filed, number of poop
emojis on the ticket, number of thorns it got in retros...

Do your homework.
No one above the first line of supervision wants to hear why
your technology is better. They want to know what it will do for
the business. You need to show rock-solid business reasons why



C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 4

your ideas will work in terms of expenditures reduced, work
hours saved, customer happiness gained, or downtime averted.

Do the cost-benefit analysis and show your math.

Engage in PsyOps.
It’s human nature to resist change, so understanding why your
colleagues or higher-ups cling to a terrible / outdated / cruft-
stuffed solution is key to winning their hearts and minds.

Ask questions: Has it just always been done this way?
Does your replacement come with a learning curve? Is it
possible they also hold a grudge against the terrible tech
but don’t want to upset anyone by admitting it?

Uncovering the reasons why this dumpster fire got lit in the
first place helps sketch out your argument for extinguishing it.

“Why?” me a river.
You have everything you need! Wrap it all up in a polished
presentation or design doc and rehearse ahead of time, because
it’s likely your sole opportunity to make the case.

Be a leaf on the wind.
In the business world, there’s no such thing as a purely
technical problem. Sometimes a demonstrably bad solution



C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 5

is like a zombie that just won’t die, powered by unseen forces
such as politics, the current tech stack, other systems it has to
integrate / interface with, or juicy blackmail that the solution’s
sales rep has on your boss’s boss’s boss — things that are far,
far beyond your control.

If you come from wanting to build a great product and you
have data and documentation to back up your thinking,
chances are people will at least hear you out. If they still insist
on the original spec, well, you did all you could. A possible
silver lining is that your diligence and entrepreneurial spirit
get you noticed, opening up new opportunities…ideally on a
different team where you’ll never have to touch that POS again.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 6

How to lure your team
back into the office
without inciting a mutiny

Back in March 2020, when we all said “See you in a couple
weeks!” and walked out of the office, we had no idea those
first few weeks of remembering to unmute while sitting next
to a pile of laundry would turn into months. Then years. Now
that it’s reasonably safe for all of us to once again share the
same air, however, many companies want their people back
on-premises most, if not all, of the time. Heck, even Zoom
asked their employees to return to the office.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 7

At the same time, many employees haven’t been too keen
to embrace return to office (RTO) plans and resume their
commute or relinquish the joy of working in their jammies.
They need a more compelling reason than <corporate voice>
Because we said so. The fact is, people have come to expect
flexibility and autonomy around how, when, and where
they work.

How can you persuade your WFH employees to voluntarily
get on board the SS RTO?

Accept that hybrid is now reality.
The percentage of full-time employee butts in desk chairs
right now is the same percentage that willingly came back
to the office. The remaining percentage (probably a big one)
is the one you need to reach with an alternative policy (i.e.,
more flexible than the 9-to-5 weekday schedule that was the
prepandemic standard for most offices).

Embrace the split: Craft a part-time-in-office /
part-time-remote policy that works for both sides.
Otherwise, plan on backfilling roles for the 39 percent
of workers who say they’d leave their current job if they
were mandated to resume a full-time office presence.



C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 8

Listen up.
If remote employees
grumble whenever RTO
plans are mentioned, ask
why they resist changing
into hard pants and
coming to the office. For
example, 42 percent of
parents with children
under 18 say that remote

work allows more flexibility with school, daycare, and other
family responsibilities. (This overlapped almost entirely with
the number of parents who reported using “PAWpatrol99” as
their Okta password.)

Overall, actually getting to the office is a widely loathed aspect
of RTO (59 percent), along with dressing more formally
(43 percent). Recognizing these issues lets you craft an
enticing RTO that addresses employee needs with benefits
like hybrid scheduling, commuter perks like paid parking or
transportation, or a more relaxed dress code.

Go both ways.
What does the business want from having employees in office:
in-person collaboration? Higher productivity? Better client
interactions? Evidence that your employees do actually exist

If remote employees
grumble whenever
RTO plans are
mentioned, ask why
they resist changing
into hard pants and
coming to the office.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

4 9

from the neck down? It’s possible to achieve these outcomes
while still offering your workers some flex in their schedule.

Successful companies with productive hybrid cultures do one
or both of two things:

Create a policy of targeted days for all employees
to be onsite to maximize cross-org together time.
Tuesdays, Wednesdays, and fantasy football draft
days are peak for most hybrid offices.

Require a set number of in-office days per pay
period / quarter / month, but leave it up to the
individual to decide which ones.

Keep it equitable.
Speaking of going both ways: A BambooHR survey found
that 10 percent of independent contributors reported that
executives at their companies had the option to work from
home, but no one else did. Extend the same trust to your
employees that you do to your senior personnel.

Reopen the treat shop.
Between the pandemic and economic downturn, many
companies cut expenses by eliminating in-office benefits like
gourmet coffee machines, smorgasbords of exotic free drinks
and snacks, and catered office lunches.

1.

2.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

5 0

 Keep it simple: You don’t need to bring back over-the-
top perks like free laundry service or beanbag rooms or
five kinds of kombucha on tap — just the standard techie
treat trinity of on-demand caffeine, sugar, and carbs. After
all, right now your WFH employees have to make their
own coffee and buy their own snacks. Just saying.

Bring the hammer down.
When all else fails, if you absolutely, positively need your
people present onsite and can’t convince or cajole them into
returning, there remains one option: threaten them (AKA
“pulling a Google”). Alphabet Inc. initially asked workers
to be in the office at least three days each week. Then they
announced that performance reviews can take consistent office
absences into account, and badge records would be used to
identify any Googlers stubbornly refusing to change out of
their sweatpants and report in person.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

5 1

How to survive a
meeting that should
have been an email

Some meetings can feel like the equivalent of ransomware,
only in a conference room. Any time a particularly dreaded
session looms on your calendar and it’s not feasible to fake an
emergency event (network failure, heart attack, etc.) to get out
of going, these strategies can help minimize the physical and
psychological trauma.

Keep those eyes on the prize.
This is crucial: you need to at least appear like you’re paying
attention. For virtual sessions, simply look up every now
and then, directly at screen center; if it’s a live speaker,
brief eye contact should do the trick. Nod occasionally, as
though you’re agreeing with the latest point. But not too
enthusiastically, or you might end up in charge of whatever it
is they’ve been droning on about for 45 minutes.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

5 2

Memorize this phrase.
If you’re abruptly summoned back from pleasant daydreams
of being anywhere but in this meeting by someone asking for
your thoughts on the current ideation session, you need to be
prepared. These words will save you every time: “I’ll be happy
to circle back and synergize my learnings with everybody later,
but right now I’m drinking from the firehose.”

This clearly establishes you as a deep thinker who requires time
to absorb all this wisdom, and “later” never arrives because this
meeting will never actually end.

Play Lingo Bingo.
Like any endurance event, surviving
this marathon meeting / strategy
session / brainstorm requires

proper hydration. There’s
nothing like a little drinking

game to stay hydrated.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

5 3

Lingo Bingo4 is the perfect
pastime: pick a phrase or
three that makes you die a
little inside every time you
hear it, then swig from your
beverage whenever someone
utters it. Research shows a
1:3 ratio of caffeinated to
noncaffeinated beverages
is optimal. (The numerous
bathroom trips this game
necessitates are a feature, not

a bug.)

Take “notes.”
Taking notes during a meeting can help you stay focused and
retain important information. It can also help you retain your
sanity when those “notes” include intricate doodles, spur-of-
the-moment caricatures of Daryl, who always wants to just go
back a few slides, or perhaps scorekeeping for the Lingo Bingo
championship.

4 Experts caution against using actual Bingo cards, even with like-minded coworkers,
because: (1) it’s difficult to disguise the cards; and (2) it’s poor form to shout BINGO
during Jerry the ABM’s presentation on disintermediating mission-critical metrics.

For virtual sessions,
simply look up
every now and then,
directly at screen
center; if it’s a live
speaker, brief eye
contact should do
the trick.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

5 4



Ransack the snacks.
Any decent extended meeting or brainstorm session features
a buffet of goodies, so make like a raccoon and snag a pile
of your favorites. Be shameless. After all, this is a survival
situation.

Make a game of it: How silently can you tear open each
package of trail mix? (Or how loudly, if you’d prefer to tip
your meeting participation level from passive-aggressive to
aggressive-aggressive.)

Purge your inbox.
Keep yourself busy accomplishing something useful while
making it look like you’re attentively keeping notes. No better
time than a marathon meeting to get cracking on those 3,578
unreads. Definitely have a backup strategy in mind, though, in
case you achieve Inbox Zero before the meeting ends.

C H A PT E R 2 : S U R V I V I N G T H E WO R K P L A C E

True tales of survival:Surviving a hurricane with a
bucket brigade
It was October 30, 2012. I was working for Fog Creek Software
at 75 Broad Street in Lower Manhattan. Squarespace and Peer 1
Hosting were in the same building, and we shared an on-premises
data center. Unfortunately, this was our only data center at the
time, because we had just decommissioned our DR location in an
effort to move everything to the cloud. We had tested our code
and infrastructure services on AWS, but we had yet to upload our
vast amounts of data. And then Superstorm Sandy hit.

The building had backup generators. These were in the basement,
along with the tanks holding diesel to fuel these generators.
When the storm hit, though, lower Manhattan flooded and this
basement was completely filled with water — one floor above, in
the lobby, the water was four feet deep. The generators could
not go online due to being under water, but we were lucky in
that the data center had its own small backup generator with
its own fuel tank. Less lucky was that it was at the top of the
building on the 17th floor.

When the storm passed, the data center was still online. The
folks operating the data center were there 24 / 7, sleeping on
the floor, and they were communicating with all of us about how
much fuel was left. Everybody was trying to lower usage in the
data center to preserve fuel and extend the running time, but
the generator was running low on fuel so it was only a matter of
time. But then a miracle happened.

It so happened this was a colocation data center, and someone
from one of the other big customers there was somehow able to
secure a load of diesel fuel — put it on their personal Amex for
$25,000 — and the flooding had gone down enough by then that the
truck could actually make it to our building. They were also
able to round up some empty 55-gallon drums.

I came in to participate in keeping the data center alive, and
people from other companies in the building came, too. The truck
showed up and unloaded diesel into the drums. From there we
emptied it into 5-gallon buckets and carried it up 18 flights of

stairs to the data center and poured it into the fuel tank of
the generator. Then we’d go back down and do it again.

We had shifts of people doing this for almost 24 hours. A gallon
of diesel fuel weighs about eight pounds, so you were carrying
two buckets each weighing 30 to 40 pounds. We didn’t have any
lids for them, so the fuel slopped out and the stairwell got
very slippery and filled with diesel fumes. We had lights barely
working in the data center but in the main part of the building
it was zombie town, apocalypse pitch dark, the only light was
your headlamp or flashlight.

After my shift was over I managed to get a cab home to the Upper
East Side. I was covered in diesel fuel, feeling incredibly sick
from the fumes, and I couldn’t wait to get a shower. My wife’s
like, We are not even going to try washing those clothes, so we
double-bagged them and threw them in the trash.

Simultaneous to staffing the bucket brigade that was keeping the
data center alive, our Fog Creek team also had our last-ditch
emergency backup strategy going, which was to copy all the data
to external USB drives and take those drives to an Amazon data
center in Virginia. It was vast amounts of data, which you can’t
upload quickly over a typical internet connection, and they
would only accept delivery by courier so we had no choice but to
take it to them. We had to figure out, who’s got a car, how much
gas have you got, how far can you go? Sandy had hit the whole
East Coast and many gas stations were closed or sold out.

The story has a happy ending. The data was on its way to
Virginia, they got the basement pumped out and everything back
on and in working order in the building. The data center stayed
alive through one of the most destructive storms in history.
And me? I learned a big lesson about having an active disaster
recovery plan at all times. What’s gonna happen if the worst-
case scenario goes down? What are you going to be doing — are
you ready to take that risk? Because you never know when the
next super storm is coming.

– Derrick Miller, Google Cloud Engineer

5 7C H A PT E R 1 : S U R V I V I N G YO U R J O B (# H U G O P S)

Surviving the
future

“If you think good architecture is
expensive, try bad architecture.”

– Brian Foote and Joseph Yoder

Chapter

3

5 8C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

How to survive a
KaIju attack on your
data center

As anyone who lives near the Pacific Ocean can attest, the
threat of sea-born interdimensional creatures wreaking havoc
on infrastructure is an ever-present one. Once Godzilla and
friends break land, it can often take hours for a team of giant
mechs to deal with them. In the meantime, you can say
sayonara to bridges, skyscrapers, and your data center.

Any cloud region name containing “West” or “Japan” or
“Korea” puts you at elevated risk of Kaiju-related data
destruction. But the truth is, unexpected catastrophic threats
to your data can (and will) emerge any time, anywhere.

Here’s how you can avoid annihilation.

Create a survivability plan.
As Amazon CTO Werner Vogels warns, “Everything fails all
the time.” You need a strategy to prepare for the inevitable
demise of your cloud provider’s data center, whether it

5 9

crumbles from the force of a 15,000-ton
Kaiju or a 1.5-pound squirrel.5

Start by determining the
optimal size and survival
characteristics for your
app’s data cluster. A little
fine-tuning will help you
determine what category
of Kaiju your cluster is
prepared to withstand.

Set custom availability
goals at the database, table, and row levels.
No matter the nature of the disaster — be it an airborne
Mothra strike or sharks gnawing undersea cables6 — your
critical data will be available.

Replicate, replicate, replicate.
Database replication (3x is the ideal starting point) is a
survival must for single-region apps. If a replica is lost, your
remaining replicas continue serving reads and writes.

5 Google “squirrel outage” and you’ll find a lengthy record of both recent and historic
incidents of squirrels causing data center power outages.
6 Also an astonishingly common problem.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 0

Determining how many replicas you need depends on a
number of factors, including customer locations, workload
criticality, and risk of Maximum Mega Kaiju-category events.

Disaster-proof your app.
A multi-region architecture ensures that, even when your
cloud provider’s services go dark in one availability zone —
whether due to an epic battle between Rodan and Godzilla
to determine the new King of the Monsters, or a backhoe
severing a data center network cable — your app lives on.

Alert the Mecha Kaiju Response Team.
They’re probably already aware of the situation, but it’s good
to file a ticket anyway.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 1

How to save your
company $1 billion
(no, really)

Government efforts to control how data produced within
their borders can (and cannot) move around the planet are
increasing faster than your AWS egress charges. Data privacy
laws like the EU’s General Data Protection Regulation (GDPR)
are pushing companies to store user data within the country
where it’s collected — with potentially stratospheric fines
levied against companies who don’t comply. Meta learned
this the hard way after being socked with a €1.2 billion ($1.3
billion) fine for violating GDPR by moving European user
data to US data centers.

Many US-based enterprises are surprised
to learn that they, too, are vulnerable to
GDPR fines even though their business
doesn’t target European
customers. (Sorry, we don’t
make the rules.) In addition,
many other countries

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 2

outside the EU as well as US states <side eyes at California>
are passing their own privacy laws. These regulations are often
complex, but fortunately there are some simple steps most
companies can take to meet basic data privacy requirements
and avoid fines. Especially the ones carrying ten zeroes.

Be like Cookie Monster.
If your website or app tracks user behavior (if it doesn’t, are you
even marketing?), then placating data protection policies
requires gaining user consent.

To protect visitors’ privacy, sites should have a popup that
allows visitors to accept or decline consent for third-party
cookies upon their first visit. This popup should also include a
link to your privacy policy.

Cover your privacies.
We know, we know: who actually reads user privacy statements?
Regardless, don’t just ask ChatGPT to whip one up for you. The
Venn diagram of the people who DO read privacy policies and
the people who can fine your business for violating data privacy
regs has an approximately 99.999 percent overlap.

Be aware of relevant privacy rules: You must explain
how your app or site collects user data and how it’s used.
For example, your privacy policy should specify how a



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 3

customer’s contact information will be used (marketing
lists, third-party partners, feeding your new AI) and
how contact will be made (email, phone, standing in
their front yard holding up a boombox), as well as how
customers can opt out of these lists and communications.

Get cryptic.
Many privacy laws, including GDPR, require businesses to
secure and protect user data through encryption. This ensures
that, in the event of a breach, the stolen data is useless. (Take
that, hackers!) The upside is doing this also reduces your risk
exposure if your company gets hacked, since encryption deters
both Russians and robots equally.

Keep (user) options open.
GDPR and similar laws require that businesses give users
access to their information upon request. You must provide a
way for users to request their saved data. Users must also have
a way to withdraw consent and have their data deleted.

Make it good: If your version of this takes too long or
otherwise frustrates users, they can report you, leading
to one or more regulatory agencies poking around in
your sensitive compliance areas (ouch).



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 4

Keep it strictly personal.
GDPR and its regulatory ilk govern every type of user
information your business can conceivably collect. Literally
every nanobyte of data you can hold about customers
must be compliant. This includes: email addresses, device
information, user behavior, your dog’s favorite baseball team
— it’s all fair game.

Leave your data where it belongs.
Reduce risk and make your life easier by choosing tools
and services purpose-built to address compliance. Use
CRM tools that automate data collection and management
according to GDPR guidelines. Choose a database that
allows full control over encryption and who has access
to your data, with built-in data localization for row-level
control over where user data resides.

Such tools can’t completely solve the compliance problem for
you, but they do hand you the (encryption) keys to solve it
yourself, according to your specific business needs and which
government agencies might be peering over your shoulder.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 5

How to protect your
ass(ets) from AI attacks

Until now, companies
mainly had to worry about
opportunistic hackers hunting
for open servers to exploit, the
equivalent of walking down a
street trying all the car doors in
the hopes that one’s been left
unlocked. Now, thanks to AI,

hackers get right to the good stuff by targeting specific servers
and using chaining language models and other AI capabilities
to perform deeper probes into any internet-exposed
infrastructure — like port scans, only on steroids. AI also will
enable them to exploit vulnerabilities more rapidly and with
greater sophistication than ever before.

But there are analog methods for foiling even the cleverest of
AI-driven attacks that are simple, straightforward, and don’t
even require AI.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 6

Patch all known vulnerabilities.
We shouldn’t even have to say this, but: 60 percent (!) of all
data breaches are caused by companies failing to patch and
update software in a timely fashion. Don’t be them.

Go on a security tool scavenger hunt.
The average large enterprise has 70+ tools (!!) helping them
with their security posture. This scenario creates more
opportunities for missing subtle-but-important signals than
star-crossed couples in a ‘90s rom-com.

Centralize everything: Audit all your security tools
and keep only the essential ones. Next, implement one
master data management (MDM) tool to provide a
single source of truth for the organization’s essential
business data.

Create an allowlist.
Many companies no longer have a clear understanding of their
own technology portfolios. Gen Z and Millennial employees
in particular don’t think twice about using browser-based
productivity tools and downloading new applications with
click-through agreements.

Employees download / grant permissions to apps
without alerting IT or the security team, and with scant



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 7

60 percent of all data breaches are caused
by companies failing to patch and update
software in a timely fashion. Don’t be them.

understanding of potential data leak implications. The result
is an attack surface the size of Jupiter.

Set a standard: First, create an org-wide standardized
“allowlist” of approved tools and services. Next,
implement a process that ensures any new additions
pass through security review before they go on
anybody’s laptop.

Go visit granny.
Just about every enterprise org has “golden girls” —
applications that roll along with no new feature development,
dependably doing their job year after year. These long-lived
workhorses often go untended, possibly because the original
developers are no longer around and everyone else is terrified
to touch the codebase.

Such venerable applications likely contain vulnerable code or
dependencies (see also: log4j). It’s time to train new developers
on these software beasts of burden to update them and build
familiarity with the codebase.



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 8

Cut the cord: If for any reason an application is too brittle
to change, a drastic yet effective second option is to leave it
untouched but remove inbound internet access.

Shift left, but not too much.
The core of DevOps is development teams taking full
responsibility for their own services or applications, from
build to test to deploy. But there is such a thing as too
much responsibility. Expecting the average engineer to be
fluent in cloud infrastructure, databases, network config,
pipeline tooling, caching, Kubernetes, and security is a tad
bit unrealistic.

Realistically, how many teams have both the experience and
skill sets to adequately handle all security concerns across
their application stack, cloud environment, and toolchain?

Security is increasingly a job for a focused expert, not a
frazzled dev team on a tight launch deadline. Especially now
that the bad guys have AI, too.



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

6 9

How to duct tape a
shattered single pane
of glass

In the beginning there was on-premises, with key punches,
batch jobs, and a single OS. Then the people cried out, “Give
us cattle, not pets!” And so the great ones bestowed upon the
world virtual machines and hypervisors. Chief among these
gifts was VMware, a single pane of glass for managing all
enterprise workloads. Peace lay upon the (bare metal) land.

But, lo, ages passed and paradigms shifted. Enterprises moved
into the cloud, which visited a terrible plague of complexity
upon operating infrastructure. It was a time of great chaos:
divisions rushed to create their own cloud provider rather than

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 0

standardizing on one, such that the same data would often get
uploaded to the same cloud multiple times. In desperation,
some divisions even rendered unto their vendors more gold
to do the support and monitoring of their own workloads. All
across the land, the people mourned the shattering of their
single pane of glass.

It falleth upon technical leadership to gather together all those
pieces and restore that single pane of glass. We hold up to you
these four commandments to guide your path.

Consolidate.
Thou shalt reduce complexity.

Bring databases together. Heck, bring data centers together.
Standardize on integration tools and endpoint controls.
Centralize security. Implement a single master data
management (MDM) tool. Use software / services suites as
much as possible.

The goal is to pare down the number of strategic infrastructure
vendors to five (best) or seven (if thou must).

Standardize on Kubernetes.
Thou shalt have but one orchestrator.

Kubernetes won the container wars, and it’s ubiquitous. That
makes it the only technology with the potential for returning

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 1

again to a single control pane. Most of the software world has
already moved or is moving to K8s anyway. It’s critical that all
new SaaS and PaaS workloads run Kubernetes.

Over time, you can work backwards to migrate existing
workloads as well. Make K8s your single pane of glass to run
enterprise workloads — no matter where they run.

Welcome automation and AI.
Thou shalt require highly automated solutions.

Visibility is crucial, but it can only do so much. Humans will
never be as fast as computers, so routine operations need to be
operated by software, not people.

For important tasks that have traditionally remained
stubbornly manual, such as SQL query tuning, look for ways
to apply AI-driven tools.

Preach it.
Thou shalt deliver the word unto thy people.

As you consolidate and standardize, teams are going to fight to
keep their favorite tools and comfortable workflows. There’s no
getting around it: some people are going to be seriously pissed.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 2

But operating with multiple dashboards adds complexity
and kills velocity. Emphasize and evangelize the benefits that
everybody will enjoy from consolidation, standardization, and
automation, like more time to experiment with new ideas and
less — or even zero — pager duty.

Eventually everyone will be right there with you, gazing upon
your shining, newly intact, single pane of glass.

<Cue heavenly music>

Visibility is crucial, but it can only do so
much. Humans will never be as fast as
computers, so routine operations need to
be operated by software, not people.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 3

How to build an
emergency life support
system for a legacy app

Migrating existing apps to the cloud is never straightforward,
especially when you’re refactoring a legacy monolith (insert
COBOL jokes here). But here’s the important thing to
understand about venerable apps in long-established
companies: these are the apps that make the moolah. Do not,
under any circumstances, break them.

But now your CIO wants everything to go to the cloud.
Everything. There’s just one wee problem: your org’s main
honeypot app (written in the floppy
disk era) must be completely rewritten
— but there’s no time or budget for
that in the migration plan.

So! How do you go about
moving critical legacy tech to the
cloud without breaking anything?

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 4

Build a [hybrid] bridge and get over it.
Hybrid cloud is a combination of two (or more) computing
environments that share information with one another
and run a uniform series of apps. In this case, we’re almost
certainly talking about one bare metal or virtual environment,
where your legacy stuff was born and has lived all its life,
connecting to a public cloud.

Link your co-lo data center to your public cloud platform.
We’re talking about a direct, dedicated connection using a
service to link your cloud and on-premises networks. This lets
you span environments without compromising performance
and ensures smooth and reliable data transfers — even at
massive scale.

Build APIs in front of your legacy app(s).
Use your favorite software development paradigm. Keep it
simple. Then…

EITHER: Strangle that app.
Keep these APIs healthy and rely on overlay networking
until you finish strangling that app (or apps). Then, once
there’s finally budget and resources, refactor them and
move them completely over to the cloud.



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 5

OR: Make the bridge permanent.
Seriously: stay hybrid. If you have a functioning and
stable legacy app that rarely changes but can’t be retired
easily, it makes sense to keep it intact instead of trying to
refactor for the cloud.

That way, no one ever has to be the one blamed for
breaking The Sacred Code That Is So Important We Haven’t
Touched It In Decades.

This is a surprisingly common pattern. For example, financial
services orgs often have a critical need for scalable transaction
processing while still operating from an on-premises
mainframe database. In such cases, this build-a-bridge hybrid
cloud model makes a lot of sense and still allows for leveraging
services like AWS Lambda for true pay-for-use computing
needs. It can also lend OG street cred now that repatriation is
a thing. Move data back to bare metal? We never left!



C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 6

How to justify
blowing up your tech
stack while playing a
round of golf

Face time with executives, board members, or anyone else
directly overseeing your IT budget is precious. You’ll take it
whenever and wherever you can get it, even if the “when” is 7
AM tomorrow and the “where” is on the golf course. After all,
the secret to success in golf is to turn three shots into two, and
the same applies to persuading leadership that a major refactor
is needed. A lot is riding on your ability to explain the benefits
of blowing up your current tech stack while not embarrassing
yourself on the green.

Here’s how to survive the minefield of balancing business with
the sport of kings during your cart and fairway time.

Understand the rules.
Golf has some pretty obscure rules. For example, the “Loose
Impediments in the Hazard” rule lets you pick up foreign

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 7

objects while simultaneously treating the ground like it’s lava.
Nimbly removing a twig without touching the bunker will
not go unnoticed by your colleague. Once they recognize your
knowledge of and adherence to the complex rules of golf,
they’re ready to appreciate your deeply technical GDPR data
sovereignty strategy.

Tee up the conversation.
Sure, your (very) senior colleague invited you for this round of
golf at Monolith Hills to eventually talk business. But knowing
when and how to bring up work requires just as much skill as a
long par 5 with a narrow fairway and water hazard. When the
moment feels right, here are a few golf-related segues to try:

“Dang, you’re locked in today! Which is a good thing when
you’re playing golf. Vendor lock-in, on the other hand, is a
real problem.”

“I don’t think I can hit the green from here. Yup, I have a
real geographic reach problem. It’s simply impossible for me to
deliver this ball to where it needs to go without a lot of latency.”

“Ouch, can I take a mulligan? Of course, there are no
mulligans when it comes to loss of customer loyalty and
lower CSAT scores that result from single-cloud outages.”

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 8

Carry only a single club.
After a few holes spent watching you putt with a 7-iron,
your colleague should truly get it: no single provider can
accommodate every possible business need.

Quote Caddyshack liberally.
No one knows why this is still a tradition — just roll with it.
The shortest distance between two points is a straight line in the
complete and opposite direction.

C H A PT E R 3 : S U R V I V I N G T H E F U T U R E

7 9

About the Author
Michelle Gienow is a recovering journalist turned software
developer. In her spare time, she also teaches wilderness survival
skills like tracking, firemaking, and which plants you can eat
without dying. Writing a book about surviving disasters in the tech
world was an unexpected but enjoyable overlap of these skill sets.

She is also co-author of the O’Reilly book, Cloud Native
Transformation: Practical Patterns for Innovation.

About the Illustrator
Giovanni Cruz first realized he could draw when he was bitten
by a radioactive pencil. To the amazement of his family, this
has become an actual paying career. He can be often be heard
mumbling,“with a great shaperner, comes a good point.”

About Cockroach Labs
Cockroach Labs is the creator of CockroachDB, the most highly
evolved, cloud native, distributed SQL database on the planet.
Helping companies of all sizes — and the apps they develop —
to scale fast, survive disaster, and thrive everywhere.

http://cockroachlabs.com

8 0

“We have literally been unable to kill this thing.
No matter what we’ve thrown at it.”
– Cloud Platform Architect, Bose

LEARN
TO BUILD
WHAT
CAN’T BE
KILLED

The essential reference guide to CockroachDB,
the world’s most evolved distributed SQL
database, shows how to architect apps for
effortless scale, ironclad resilience, and low-
latency performance for users anywhere.

For a free copy, scan this QR code or visit:
cockroa.ch/cockroach-book

cockroa.ch/cockroach-book
cockroa.ch/cockroach-book

Sometimes keeping applications online and healthy is
the least of your problems. Unforeseen, and occasionally
bizarre, disasters (fire, flood, fat-fingered YAML files)
can strike your workloads or work life at any time.
What will you do?

This illustrated guide offers advice for surviving a variety of
scenarios, such as:

How to protect your org and your data
from AI-powered attacks

How to survive a delusional delivery date

How to get WFH employes to RTO
without a mutiny

How to build an emergency life support
system for legacy apps

How to survive a Kaiju attack on your
data center

Read this guide for tips to survive common disasters,
bizarre mishaps, and extreme situations that may
threaten your workloads, services, and sleep — plus
whatever is left of your sanity.

cockroachlabs.com











cockroachlabs.com

