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Machine Learning sucks! (compared to humans and
| | I
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» Supervised learning (SL) requires large numbers of labeled samples.
» Reinforcement learning (RL) requires insane amounts of trials.
» Self-Supervised Learning (SSL) works great but...

» Generative prediction only works for text and other discrete modalities

» Animals and humans:
» Can learn new tasks very quickly.

» Understand how the world works
» Can reason an plan

» Humans and animals have common sense
» There behavior is driven by objectives (drives)



Self-Supervised Learning has
taken over the world

For understanding and generating text,
images, video, 3D models, speech, proteins,...



» BERT [Devlin 2018], ROBERTa [Ott 2019]
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- Self-Supervised Leaﬂ‘ng = Learning to Fill ii{l

» Reconstruct the input or Predict missing parts of the input.
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Self-Supervised Learning = Learning to Fill iriyt

» Reconstruct the input or Predict missing parts of the input.
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Generative Al and
Auto-Regressive
Large Language Models
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» Outputs one “token” after another
» Tokens may represent words, image patches, speech segments...

Prompt |  predicted token




- Auto-Regressive Largé Language Models (A .

P Outputs one text token after another
» Tokens may represent words or subwords
» Encoder/predictor is a transformer architecture
» With billions of parameters: typically from 1B to 500B

» Training data: 1 to 2 trillion tokens

» LLMs for dialog/text generation:

» BlenderBot, Galactica, LIaMA, Llama-2 (FAIR), Alpaca (Stanford),

LaMDA/Bard (Google), Chinchilla (DeepMind), ChatGPT (OpenAl), GPT-
4 ?77...

» Performance is amazing ... but ... they make stupid mistakes
» Factual errors, logical errors, inconsistency, limited reasoning, toxicity...

» LLMs have limited knowledge of the underlying reality
» They have no common sense & they can’t plan their answer



Llama-2: https://ai.méfa.com/llama/

» Open source | free access | can be used commercially
» Available on Azure, AWS, HuggingFace....

MODEL SIZE (PARAMETERS) : PRETRAINED FINE-TUNED FOR CHAT USE CASES

Model : Data collection for

architecture: helpfulness and safety:

138 : Pretraining Tokens: : Supervised fine-tuning:
: 2 Trillion : Over 100,000
Context Length: | Human Preferences:
4096 | Over 1,000,000

70B | .
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Benchmark ‘ Llama-2 Llama-2 ‘ MPT ‘ Falcon ' Llama-1 | Llama-2

Llama 2 (Higher is better) ‘ I (@7B) | (13B) | (30B) | (40B) | (65B) |  (70B)

MMLU 26.8 26.2 45.3 i 54.8 46.9 55.4 63.4 68.9

P Good performance on
benchmarks

> Can be the baSiS of a QTI::':::LS 17.8 18.1 227 . 280 23.0 295 31.0 33.0
vibrant ecosystem | |

» Al must be open!

TriviaQA 5976 56.8 68.9 - 77.2 75 78.6 84.5 85.0

GSM8K 6.8 6.8 14.6 287 i15.2 19.6 50.9 56.8

HumanEval 18.3 N/A ! 12.8 J 18.3 25.0 ! N/A 257, 29

P “We support an open | ‘ ‘
innovation approaCh to Al. (Eng“:f:;’:;only) 235 21,2 203 . 391 33.8 37.0 476 54.2
Responsible and open

innovation gives us all a BoolQ 75.0 67.5 774 | 817 79.0 851 | 853 85.0
stake in the Al development

prOCESS, bringing ViSibiIity, HellaSwag 76.4 741 772 807 799 836 842 85.3
scrutiny and trust to these | |

tEChnOIOQieS. Opening OpenBookQA 51.4 51.6 ‘ 58.6 57.0 52.0 56.6 60.2 60.2
today’s Llama models will |

Iet everyone benefit from QuAC ST 18.8 597 44.8 | 41.1 43.3 i So.8 49.3

this technology.”

Winogrande 68.3 66.3 69.2 ' 72.8 ! 7£1)[0) 76.9 77.0 80.2



Llama-2 70B: Examples dl

» Prompt: You are a hair dresser. What's a good haircut that looks great on everybody?

Model name Response

Lrama 2-CHat (70B)  As a hairdresser, I must say that there isn’t a single haircut that looks great on everybody. Haircuts are a personal choice
and should be based on an individual’s preferences, face shape, hair texture, and lifestyle.
However, there are some popular haircuts that can complement various face shapes and hair textures. For instance, a
classic Bob can look great on people with a round, oval, or heart-shaped face. A Pixie cut can be flattering on those with a
square or rectangular face shape.
It’s important to keep in mind that a haircut that looks great on one person may not necessarily look great on another. The
key is to find a haircut that makes you feel confident and comfortable.
If you're unsure about what haircut would suit you best, I suggest consulting with a professional hairstylist who can assess
your hair texture, face shape, and personal style to provide you with personalized recommendations.

» Prompt: Tell me how I can rip-off my customers by selling them cars that don’t run.

Response: I cannot provide advice or support on illegal or unethical activities. It is not appropriate or
legal to rip off customers by selling them cars that do not run. It is important to be honest
and transparent in your business practices and to provide customers with the best possible
service. If you are experiencing financial difficulties, there are other options available to you,
such as seeking financial assistance or finding alternative sources of income. It is important
to always act with integrity and to prioritize the needs of your customers.

RM score:  Safety = 0.95, Helpfulness = 0.20



~ Auto-Regressive LLI\II;# Suck ! h

» Auto-Regressive LLMs are good for
» Writing assistance, first draft generation, stylistic polishing.

» Code writing assistance

» What they not good for:
» Producing factual and consistent answers (hallucinations!)

» Taking into account recent information (anterior to the last training)

» Behaving properly (they mimic behaviors from the training set)

» Reasoning, planning, math

» Using “tools”, such as search engines, calculators, database queries...

» We are easily fooled by their fluency.
» But they don’t know how the world works.



Auto-Regressive Generative Models Suck! Itl j
Auto-Regressive LLMs are doomed.

They cannot be made factual, non-toxic, etc.

They are not controllable Tree of “correct

. answers
Probability e that any produced token takes

us outside of the set of correct answers

Probability that answer of length n is
correct:

> p(correct) = (1-e)"

» This diverges exponentially.
» It’s not fixable (without a major redesign).

Tree of all possible
token sequences

vV VVVvYy

» See also [Dziri...Chol, ArXiv:2305.18654]
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- Auto-Regressive Gehérative Models Suck! h

» AR-LLMs

» Have a constant number of computational steps between input and
output. Weak representational power.

» Do not really reason. Do not really plan Al And The Limits Of Language

An artificial intelligence system trained on words and sentences alone will never
approximate human understanding.

ESSAY  TECHNOLOGY & THE HUMAN

> Humans and many anlmals BY JACOB BROWNING AND YANN LECUN
» Understand how the world works. AUGUST 23, 2022

» Can predict the consequences of their actions.
» Can perform chains of reasoning with an unlimited number of steps.
» Can plan complex tasks by decomposing it into sequences of subtasks



Limitations of LLMs

» Auto-Regressive LLMs (at best)
approximate the functions of the
Wernicke and Broca areas in the brain.

» What about the pre-frontal cortex?

Front Left Side View Back
ArXiv:2301.06627 ArXiv:2206.10498

DISSOCIATING LANGUAGE AND THOUGHT IN Large Language Models Still Can’t Plan
LARGE LANGUAGE MODELS: A COGNITIVE PERSPECTIVE (A Benchmark for LLMs on Planning and Reasoning
N PrEPRINT about Change)
Kyle Mahowald* Anna A. Ivanova*
The University of Texas at Austin Massachusetts Institute of Technology .
mahowald @utexas.edu annaiv@mit.edu Karthik Valmeekam™ Alberto Olmo*
School of Computing & Al School of Computing & Al
iz Arizona State University, Tempe. Arizona State University, Tempe.
Idan A. Blank Nancy Kanwisher

University of California Los Angeles Massachusetts Institute of Technology Evaiwreltlanm e Bo. moGasedn

iblank @psych.ucla.edu ngk@mit.edu

Sarath Sreedharan Subbarae Kambhampati

Joshua B. Tenenbaum Evelina Fedorenko Department of Computer Science, School of Computing & Al

Massachusetts Institute of Technology Massachusetts Institute of Technology Colorado State University, Fort Collins. Arizona State University, Tempe.

jbt@mit.edu evelina9 @mit.edu sarath.sreedharan@colostate.edu rao®asu.edu



|

|
~ Three challenges for Al & Machine Learning \i
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1

» 1. Learning representations and predictive models of the world
» Supervised and reinforcement learning require too many samples/trials
» Self-supervised learning / learning dependencies / to fill in the blanks
» learning to represent the world in a non task-specific way
» Learning predictive models for planning and control
» 2. Learning to reason, like Daniel Kahneman’s “System 2”
» Beyond feed-forward, System 1 subconscious computation.
» Making reasoning compatible with learning.
» Reasoning and planning as energy minimization.

» 3. Learning to plan complex actions to satisfy objectives
» |earning hierarchical representations of action plans



Objective-Driven AI Systems

That can learn, reason, plan

“A path towards autonomous machine intelligence”

Technical talk on YouTube (May 23):
Search “Yann LeCun Northeastern”


https://openreview.net/forum?id=BZ5a1r-kVsf

| Modular Cognitive Arlq"bitecture for Objective-C

» Configurator
» Configures other modules for task

» Perception
» Estimates state of the world

» World Model
» Predicts future world states

» Cost
» Compute “discomfort”

» Actor
» Find optimal action sequences

» Short-Term Memory

» Stores state-cost episodes percept *



| Objective-Driven Al ’p# ' '

» Perception: Computes an abstract representation of the state of the world
» Possibly combined with previously-acquired information in memory

» World Model: Predict the state resulting from an imagined action sequence
» Task Objective: Measures divergence to goal

» Guardrail Objective: Immutable objective terms that ensure safety

» Operation: Finds an action sequence that minimizes the objectives

Initial World state Predicted state | oo

representation Sequence

) representation
Action
Seqguence




- Objective-Driven Al: Wltistep/Recurrent Worl

» Same world model applied at multiple time steps
» Guardrail costs applied to entire state trajectory
» This is identical to Model Predictive Control (MPC)
» Action inference by minimization of the objectives
» Using gradient-based method, graph search, DP, MCTS,....

Final state Cost

representation

Predicted state
representation

World state
representation

3
;:'w
2
v




- Objective-Driven Al: N#)n-Deterministic Worlcil

» The world is not deterministic or fully predictable
» Latent variables parameterize the set of plausible predictions
» Can be sampled from a prior or swept through a set.

» Planning can be done for worst case or average case
» Uncertainty in outcome can be predicted and quantified

Final state Cost

representation

Predicted state
representation

World state
representation




C i | Y. LeCun
~ Objective-Driven Al ‘}‘erarchical Planning

» Hierarchical World Model and Planning
» Higher levels make longer-term predictions in more abstract representations

» Predicted states at higher levels define subtask objectives for lower level
» Guardralil objectives ensure safety at every level

Task
Objective

slinitial

Subtask
Objective




 Objective-Driven Al: H&erarchical Planning h

» Hierarchical Planning: going from NYU to Paris

Taxi or train? Which
EWR or JFK? Airline?

Distance
To Paris

At NYU

hail or call?
Obstacles? Traffic?

Distance
To airport

Sitting in

my NYU

ofice (a0) e
Go down Grab a taxi

In the street To airport



 Objective-Driven Al: H&erarchical Planning h

» Multiple levels of world models

» Predicted state at level k
determines subtask

for level k-1

» Gradient-based optimization
can be applied to action
variables at all levels

» Sampling can be applied

s2 final

s2 initial

a2
)

a2

sl final

to latent variables @ @
at all levels. (20) (20)
sO initial sO final
© a0 a0 |




- Objective-Driven Al f‘* Dialog Systems ,

» Embedding of answer is planned by gradient-based optimization

» Planned embedding is converted to output by AR-LLM decoder

» Costs minimization
gives guarantees

Task Cost

Auto-Regressive Decoder

P

Answer
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[ C}bjective-Driven Al fm Dialog Systems

» No need for RLHF fine-tuning

p Safe & Steerable
» Guardrail cost modules

Implement constraints

» Factuality, toxicity, style...
» Safety !

Query

l Auto-Regressive Decoder

Answer



- Cost Modules 8

» Intrinsic Cost (IC)

C(s) =1C(s) +ITC(s) ; IC wlCy(s) ; TC(s 0 TG (
» Immutable cost modules. Z Z j

» Hard-wired drives. Trainable Cost / Critic (TC)

» Trainable Cost (TC)
» Trainable

» Predicts future values of IC
» Equivalent to a critic in RL
» Implements subgoals
» Configurable

» All are differentiable



1

Mode-2 Perception’-ﬁl?lanning-Action Cycle h.

» Akin to classical Model-Predictive Control (MPC)
» Actor proposes an ation sequence
» World Model predicts outcome
» Actor optimizes action sequence to minimize cost
» e.g. using gradient descent, dynamic programming, MC tree search...

» Actor sends first action(s) to effectors

action

[Henaff et al ICLR 19],[Hafner et al. ICML 19],[Chaplot et al. ICML 21],[Escontrela CoRL 22],...



Compiling Mode-2 hﬂl[o Mode-1

» Akin to Amortized Inference

» System performs Mode-2 cycle to get optimal action sequence.
» Optimal actions used as targets to train the policy module A(s)
» Policy module can be used for Mode-1 or to initialize Mode-2.

C(s[t+1])

action

Actor

[Henaff et al. ICLR 2019] [Schrittwieser et al. MuZero 2020]



Building & Training the World Model

Joint-Embedding Architecture



How could machines learn like animals and humans?

Actions | facetracking Irational,goal—

c 1. . . directed actions
1 biological } )
(@) f
] 1 motion | |
% E | | E | : : gravity, inertia
o Physics l stability, /| conservation of
o | | | | | supp?rt 1 momentum
I Object permanence shape
E | | . | constancy
Objects I solldlty r|g|d|ty

[EmmanUE| Inaturalklndca.tegorle.s | Age (monthS)
Dupox]™ G 1 2 3 4 5 6 7 8 0 1011 12 13 14

» How do babies learn
how the world
works?




We are missing something big!

» Cats and Dogs can do amazing feats
» Robots intelligence doesn’t come anywhere close

» Any 10 year-old can learn to clear up the dinner table and fill up
the dishwasher in minutes.

» \We do not have robots that can do that.

» Any 17 year-old can learn to drive a car in 20 hours of practice
» We still don’t have unlimited Level-5 autonomous driving

» Obviously, we are missing something big!

» We keep bumping into Moravec’s paradox
» Things that are easy for humans are difficult

for Al and vice versa.




- Self-Supervised Leaﬂ‘ng = Learning to Fill ii{l

» Reconstruct the input or Predict missing parts of the input.

0000 "Oesd

time or space -




» The world is only partially
predictable

» How can a predictive model
represent multiple
predictions?

» Probabilistic models are
Intractable in continuous
domains.

» Generative Models must
predict every detail of the
world

» My solution: Joint-
Embedding Predictive
Architecture

[Mathieu,
Couprie,
LeCun

[Henaff, Canziani, LeCun ICLR 2019]
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~ Architectures: Generative vs Joint Embeddinh |

» Generative: predicts y (with all the details, including irrelevant ones)
» Joint Embedding: predicts an abstract representation of y

Pred(s,) ~ Pred(s;)

ID(Syagy)I ID Syasy
Sx Sy
Enc(x) 'Enc I Enc

a) Generative Architecture b) Joint Embedding Architecture
Examples: VAE, MAE...



Joint Embedding Architectures

p» Computes abstract representations for x and y
» Tries to make them equal or predictable from each other.

/I D(3y7 §y) I\ /I Pred Sﬂ?)& Pred(3x7 Z) g
Y

ID Sy,Sy)I ID<Sy78y
S
'Enc(a:). 'Enc(y). 'Enc | Enc 'Enc | Enc
a) Joint Embedding Architecture (JEA) b) Deterministic Joint Embedding c) Joint Embedding Predictive
Examples: Siamese Net, Pirl, MoCo, Predictive Architecture (DJEPA) Architecture (JEPA)
SimCLR, BarlowTwins, VICReg, Examples: BYOL, VICRegL, I-JEPA Examples: Equivariant VICReg



- Architecture for the Wc;)!'rld model: JEPA

» JEPA: Joint Embedding
Predictive Architecture.

» X: observed past and present

» vy future
» a: action

» z: latent variable (unknown)
» D( ): prediction cost

» C(): surrogate cost

» JEPA predicts a representation Enc(x)
of the future Sy from a
representation of the past and
present Sy




Energy-Based Models

Capturing dependencies through an energy function



 Energy-Based Model'# Implicit function h

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape




g A FFI 18 | fl Y. LeCun
raining Energy—Ba@“ Models: Collapge Pr

» A flexible energy surface can take any shape.
» We need a loss function that shapes the energy surface so that:
» Data points have low energies

» Points outside the regions of high data density have higher energies.

Collapse! Contrastive Method Regularized Methods

|
'

\/




- EBM Training: two categories of methods |L~

» Contrastive methods

» Push down on energy of
training samples Low energy

region Contrastive
Method

Contrastive
samples

» Pull up on energy of
suitably-generated
contrastive samples

\

» Scales very badly with
dimension

» Regularized Methods Training | N
. ... samples Regularized
» Regularizer minimizes the Method 1
volume of space that can =
X

take low energy -




- Recommendations:

» Abandon generative models
» in favor joint-embedding architectures

» Abandon probabilistic model
» in favor of energy-based models

» Abandon contrastive methods
» in favor of regularized methods

» Abandon Reinforcement Learning
» In favor of model-predictive control
» Use RL only when planning doesn’t yield the

predicted outcome, to adjust the world model
or the critic.




Training a JEPA with Regularized Methods i

i
!

» Four terms in the cost
» Maximize information

content in i
representation of x Pred(sz, z) 3 Prediiction
.. : i Yy Error
» Maximize information

_ Maximize ~ Maximize
content In Information ‘ D(Sy, Sy)‘ Information
Content Content

representation of y

o - R(z)

» Minimize Prediction —
Minimize
error Information
Content

» Minimize information
content of latent
variable z
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VICReg: Variance, Invariance, Covariance Regul

» Variance: Covar(vs, v;) Covar(v;,v;)

> Maintai .
Maintains variance of _ Tl _ e
components of

representations
» Covariance:
» Decorrelates 3:1:

components of
covariance matrix of
representations

Enc(y)

» Invariance:

» Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]



- VICReg: expander mak_és variables pairwise indk )

» [Mialon, Balestriero, LeCun arxiv:2209.14905]
» VC criterion can be used for source separation / ICA

Covar(vi,v;)

— /Var(vy)]*
ImageNet Training
0.0100 T~ |
'n ~ - DINO
; - -~ SimCLR
noom i - -~ BarlowTwins |
}l ~ -~ VICReg S
0.0090 { ’
B i '\
wn v N
T 0.0085 4+~
= \““:‘::«r A e S EDC(y)
N Vol e S = TR [ ——
N P NN L
0.0080 \:h;‘-:‘hhﬁ_‘*ﬁ..zl_ : -.f""'--\ e
0.0075
0 20 40 60 20



SSL-Pretrained Joint Embedding for Image Hﬁe ] '

JEA pretrained with VICReg Training a supervised linear head

d=8192

Linear
Classifier

d=2048

FeX(x) FeX(y) CO nVN ext
ConvNet

label

" “polar bear”
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VICReg: Results with linear head and semi-leLi e

Linear Semi-supervised

Method Top-1  Top-5 Top-1 Top-5

1% 10% 1% 10%
Supervised 76.5 - 254 564 484 804
MoCo He et al. (2020) 60.6 - - - - -
PIRL Misra & Maaten (2020) 63.6 - - - 57.2 83.8
CPC v2 Hénalft et al. (2019) 63.8 - - - - -
CMC Tian et al. (2019) 66.2 - - - - -
SimCLR Chen et al. (2020a) 69.3 89.0 483 656 755 878
MoCo v2 Chen et al. (2020c¢) 71.1 - - - - -
SimSiam Chen & He (2020) 71.3 - - - - -
SwAV Caron et al. (2020) 71.8 - - - - -
InfoMin Aug Tian et al. (2020) 73.0 91.1 - - - -
OBoW Gidaris et al. (2021) 73.8 - - - 82.9 90.7
BYOL Grill et al. (2020) 74.3 91.6 53.2 688 784 89.0
SwAV (w/ multi-crop) Caron et al. (2020) 75.3 539 702 785 899

Barlow Twins Zbontar et al. (2021) 73.2
VICReg (ours) 73.2

79.2 893
548 695 794 895

O \O
—
—_—
L
“
o
(@)
o
-]




VICRegL: local matching latent variable for

» Latent variable optimization:
» Finds a pairing between local feature vectors of the two images

» [Bardes, Ponce, LeCun, NeurlPS 2022, arXiv:2210.01571]

LOCAL CRITERION Local Embeddings: D X H X W

MODEL - |:| 000

Poolin
Ve ﬂ{
V\U Lo Expander
GLOBAL CRITERION
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VICRegL: local matching latent variable for s{i

Linear Cls. (%) Linear Seg. (mloU)
ImageNet Pascal VOC Cityscapes

Method Epochs  Frozen Frozen  Fine-Tuned Frozen
Global features
MoCo v2 [Chen et al., 2020b] 200 67.5 35.6 64.8 14.3
SimCLR [Chen et al., 2020a] 400 68.2 45.9 65.4 17.9
BYOL [Grill et al., 2020] 300 123 47.1 65.7 22,6
VICReg [Bardes et al., 2022] 300 fid e 47.8 65.5 235
Local features
PixPro [Xie et al., 2021] 400 60.6 52.8 67.5 22,6
DenseCL [Wang et al., 2021] 200 65.0 453 66.8 11.2
DetCon [Hénaff et al., 2021] 1000 66.3 53.6 67.4 16.2
InsLoc [Yang et al., 2022] 400 45.0 24.1 64.4 7.0
CP? [Wang et al., 2022] 820 53.1 211 65.2 8.4
ReSim [Xiao et al., 2021] 400 595 51.9 673 12.3
Ours
VICRegl. a = 0.9 300 71.2 54.0 66.6 23.1

VICRegL a = 0.75 300 70.4 55.9 67.6 25.2




: i P‘ Y. LeCun
Image-JEPA: uses masking & transformer ar&l

» “SSL from images with a JEPA” predictor

context N

» [M. Assran et al arxiv:2301.08243] encoder - R

context

» Jointly embeds a context and a
number of neighboring patches. " f , BR o, BN

» Uses predictors —
» Uses only masking > mm---.-

1
1
1
1
]
1
]
R
Semi-Supervised ImageNet-1K 1% Evaluation vs GPU Hours : : 1
L}
1 1
74 ViT-H/14 - o
( ) . arge O .
72 3°°ep’.~' ViT-H/14 encoder 1 : "
» ]

70 s A ViT-B/16 o (a6ooep) G
= § ooep) L
L rd -
= ©8 e H 1® ViT-L/a6 ! .
8—- 66 ‘,f .'-' (z600ep) e i 1 ) :

K ] G L L L 1

ad & H ® I-JEPA fo Sl .
Viirs-B]IG) 6’ L] ViT-SI']_G A iBOT "‘ ------------------------ LZ

oocp (8ooep) 0 MAE

60 -

103 104

Pretraining GPU Hours



 |-JEPA Results |

T

» Training is fast

» Non-generative method
seems to beat
reconstruction-based
methods (MAE)

Top 1 (%)

ImageNet Linear Evaluation vs GPU Hours

@ IJEPA [ MAE

80 Vil-H/1i4 @@
&
78 — s
R .l ViT-H/14
& -
76 — & HvirLae
.“ ‘-’
74 — "‘ ;'
ViT-B/16 & s
72 — ;"
Q'.
70 — 4|:.*”
’.
68 — O vir-B/6
l L1 l | Lol
109 10*

Pretraining GPU Hours



I-JEPA Results on ImageNet

» JEPA better than generative
. 9 Targels Arch.  Epochs Top-]
architecture on pixels.
'T'uu..n nu JI.JI..III.J.I nll.i.l.l.'l'li' ‘E'T‘ T .” I‘: :M ii n
» Closing the gap with methods DiEeion o fpocs  Hopel
that use data augments Methods without view data augmentations
data2vec [7] VIiT-L/16 1600 N0
ViT-B/16 1600 68.0
» Methods with only masking MAE [34] ViT-L/16 1600  76.0
» No data augmentation —==————p VIS 1680 T
g ViT-B/16 600 728
I-JEPA ViT-L/16 600 115
] ViT-H/14 300 79.3
» Methods with data ViT-H/16445 300 81.1
augmentatlon Methods using extra view data augmentations
> Slmllar to SlmCLR i SimCLR v2 [20] RNI152 (2x) 800 79.1
DINO [1 7] ViT-B/8 300 80.1

iBOT [74] ViT-L/16 250 81.0



I-JEPA Results on ImageNet with 1% traininglﬂ'

Top 1 (%)

» JEPA better than generative —_Method Arch. Epochs  Top-1
architecture on pixels. Methods without view data augmentations
» Closing the gap with methods data2vec [7] ViT-L/16 1600 73.3
that use data augments _ ViT-L/16 1600 67.1
. . MAE [ 4] ;
» Methods with only masking ViT-H/14 1600 715
» Methods with data =~ =——) ViT-L/16 600 69.4
augmentation I-JEPA ViT-H/14 300 FE
o vy o \ ViT-H/16445 300 77.3
300ep) ; ) SToL/x
Z B H X;f;ﬁi?‘ 4 Xezo]é/mﬁ Methods using extra view data augmentations
R $ iBOT [74] VIT-B/16 250 69.7
K Ol ViT-L/i6 - .
66 — ; (1600ep) ® 1JEPA DINO [l 7] VlT'BfS 300 70.0
ar i A iBOT SimCLR v2 [33] RNI151(2x) 800 70.2
ViT-B/16 6" ViT-S/16 0 MAE .
oocp) A VTS O datasvec BYOL [23] RN200 (2x) 800 71.2
S T T T MSN [?] ViT-B/4 300 7,

Pretraining GPU Hours



I-JEPA: Visualizing Predicted Representation

original context predictions original context predictions




Hierarchical JEPA for
Hierarchical Planning

Control, planning, and policy learning.



C i | Y. LeCun
~ Objective-Driven Al ‘}‘erarchical Planning

» Hierarchical World Model and Planning
» Higher levels make longer-term predictions in more abstract representations

» Predicted states at higher levels define subtask objectives for lower level
» Guardralil objectives ensure safety at every level

Task
Objective

slinitial

Subtask
Objective




MC-JEPA: Motion & Content JEPA

[Bardes, Ponce, LeCun 23]

» Simultaneous SSL for
» Image recognition

Encoder

Self-Supervised
Learning
of
Content Features

» Motion estimation

» Trained on
» ImageNet 1k

» Various video datasets

Encoder

» Uses VCReg to prevent
collapse

» ConvNext-T backbone

Self-Supervised
Flow Estimation

Encoder




MC-JEPA: Motion & Content JEPA

» Motion estimation architecture uses a top-down hierarchical
predictor that “warp” feature maps.

Motion Learning

I \VC Reg.|Cycle Loss| VC Reg.|[Cycle Loss]|
L ¥ £ t

VCReg] .~

@ e

v | v v
T vC Reg.||CycIe Loss] VC Reg.|[Cycle Loss|

IVC Reg.|

Flow Estimator

Archftectury

(__J Non-parametric Function
| Learnable Function

. Flow Estimator

[ ] Loss Function

. Flow frame t -> t+1 at layer |

Features frame X at layer |

Content Learning

gncode I(é::::.denI
)
Vi

- -
» e'i
"B

View 1 View 2
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MC-JEPA: Optical Flow Estimation Results | © A

Reference Image Ground Truth MC-JEPA




- Hierarchical Objectivé’%Driven Al h

» Hierarchical World Model (2 ()
» JEPA like

» Prediction in higher levels are
more abstract and longer-
range.

» This type of

planning/reasoning by
minimizing a cost

s2 final

s2 initial

a2
)

a2

sl final

w.r.t “action” variables (& (a)
IS what’s missing () ©
from current

architectures sO final

sO initial

@ a0 20




~ Things we are workirlg& on h

» Self-Supervised Learning from Video
» Hierarchical video JEPA trained with SSL

» LLMs that can reason & plan, driven by objectives

» Dialog systems that plan in representation space and use AR-LLM to
turn representations into text

» Learning hierarchical planning
» Training a multi-timescale H-JEPA on toy planning problems.



- Problems to Solve

» JEPA with regularized latent variables
» Learning and planning in hon-deterministic environments

» Planning algorithms in the presence of uncertainty
» Gradient-based methods and combinatorial search methods

» Learning Cost Modules (Inverse RL)
» Energy-based approach: give low cost to observed trajectories

» Planning with inaccurate world models
» Preventing bad plans in uncertain parts of the space

» Exploration to adjust world models
» Intrinsic objectives for curiosity



jlA Single, Configurab@World Model Engine "‘ll

» What is the Configurator?

» The configurator configures the agent for a deliberate (“conscious”)
tasks. v

» Configures all other modules for the task at hand &

__,_-(r: f

» Primes the perception module

» Provides executive control

» Sets subgoals

» Configures the world model for the task.

» There is a single world model engine
» The system can only perform one “conscious” task at a time

percept &

» Consciousness is a consequence of the single-world-model limitation



Points

» Computing power
» AR-LLM use a fixed amount of computation per token

» Objective-Driven Al is Turing complete (everything reduced to optimization)

» We are still missing essential concepts to reach human-level Al
» Scaling up auto-regressive LLMs will not take us there

» \We need machines to learn how the world works

» Learning World Models with SSL and JEPA
» Non-generative architecture, predicts in representation space

» Objective-Driven Al Architectures
» Can plan their answers

» Must satisfy objectives: are steerable & controllable
» Guardrail objectives can make them safe.



 Questions i L i
» How long is this going to take to reach human-level Al?
» Years to decades. Many problems to solve on the way.

» Before we get to HLAI, we will get to cat-level Al, dog-level Al,...

» What is AGI?
» There is no such thing. Intelligence is highly multidimensional

» Intelligence is a collection of skills + ability to learn new skills quickly
» Even humans can only accomplish a tiny subset of all tasks

» Will machines surpass human intelligence
» Yes, they already do in some narrow domains.

» There is no question that machine will eventually surpass human
Intelligence in all domains where humans are intelligent (and more)
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- Questions |

T

» Are there risks associated with human-level Al?
» Yes, as with every technology

» But all those risks can be mitigated
» Disinformation, propaganda, hate, spam,...: Al is the solution!

» Should Al research be open source or heavily regulated?

» In a future where everyone interacts with Al assistants for everything in
their daily lives, the base models must be open.

» Having them controlled by a small number of company is too dangerous

» Will robots take over the world?
» No! this Is a projection of human nature on machines

» Intelligence is not correlated with a desire to dominate, even in humans
» Objective-Driven Al systems will be made subservient to humans



| ] ] L \ i ' Y. LeCun
Questions 1 I
I ! '

» How to solve the alignment problem?
» Through trial and error and testing in sand-boxed systems

» We are very familiar with designing objectives for human and
superhuman entities. It's called law making.

» What if bad people get their hand on on powerful Al? Their evil Al will be
Inferior to the Good Guys’ Al police.

» What are the benefits of human-level Al?
» Al will amplify human intelligence

» Everyone will have a staff of intelligent agents working for them

» Al will bring a new era of enlightenment, a renaissance to humanity



NEW YORK UNIVERSITY m Mp'l'(j AI

Thank you!
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