
1© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

E B O O K

Architecting event-driven
API-first platforms to build
Everything-as-a-Service
How to bring platform thinking into your internal business
domain to help developers compose applications faster

2© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Getting up to speed with cloud-native

What is cloud-native? Why does it matter?

Everything-as-a-Service for cloud-native development

Applying a more practical approach to new products and services

Rethinking development with cloud-native

The different types of “as a Service”

Getting started

Adopt an Everything-as-a-Service (EaaS)-first approach

Nielsen Marketing Cloud— high scale, low operation

Key takeaways for Everything-as-a-Service

Tools for building cloud-native

Example streaming service recap

Conclusion

Table of contents

…..…….…………………………………………… 3

………………………………………………… 6

…...……………...…………….… 7

…….…………….… 8

……….………………………………………11

……………..…..……………………………………. 13

…………………………..…………………………………………………… 18

……………………………..… 21

..……………………………….… 22

…………………………………….……...… 23

…………………………………………….…………….… 24

……………………………………………..…….……… 34

..…………………………………..……………………………………………..… 35

A R C H I T E C T I N G E V E N T - D R I V E N A P I - F I R S T P L A T F O R M S
T O B U I L D E V E R Y T H I N G - A S - A - S E R V I C E

Getting up to speed
with cloud-native
Implementing microservices and cloud-native architectures has
been a goal for many organizations who hope to increase speed and
agility. But achieving this goal also introduces additional complexity,
as cloud-native applications are decoupled and distributed.

In this ebook, we’ll offer guidance for architecting an effective
Everything-as-a-Service approach to building cloud-native applications
and infrastructure. You’ll learn the value of adopting a strategy that
considers database, application, and API management from the onset,
and explore implementing asynchronous communications using
messaging for event-driven microservices.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 3

Modernization is a business priority today

To delight customers and win new business, organizations need to build reliable,
scalable, and secure applications. That means adopting new technologies, practices,
and consuming services as APIs.

As an application development professional, your goal is to deliver business value fast.
Modern applications help achieve this goal by separating and decoupling the monolith
into smaller functional services—or microservices—that focus on one thing and do it
well. Each microservice often has its own data store and can be deployed and scaled
independently. They represent the real world, where service boundaries equal
business boundaries.

This has forced organizations to evolve by giving engineering teams the autonomy
to architect, develop, deploy, and maintain each microservice. With this approach,
you end up with the ability to make decisions very quickly because your decisions
only impact individual services. After all, innovation requires change. You can
learn faster by making lots of little changes to drive incremental innovation,
rather than waiting to take one giant leap.

4© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

5© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key aspects of
modern applications:

• Use independently
scalable microservices such
as serverless and containers

• Connect through APIs

• Deliver updates continuously

• Adapt quickly to change

• Scale globally

• Are fault tolerant

• Carefully manage
state and persistence

• Have security built in

Modern applications were born out of a necessity to deliver smaller features faster to customers.
While this directly addresses only the application architecture aspect, it requires other teams to build
and execute in a similar manner to be successful. In order to continuously deliver features, there is a
need for all cross-functional teams to operate as a single team—a strategy referred to as One Team.

Each type of change will need its own fully automated delivery pipeline—for example, application,
infrastructure, configurations, feature flags and OS patching will either need their own pipeline or
need to be part of the Continuous Delivery (CD) pipeline. And capabilities like test automation and
security testing need to be integrated into the pipeline so there is a high degree of confidence
for changes that flow through the pipeline are ready to be deployed into production.

Increasing the speed of innovation

Cloud-native is an evolving term. The vast amount of software that’s being
built today needs a place to run and all the components and processes required
to build an application need to fit together and work cohesively as a system.

The Cloud Native Computing Foundation (CNCF) definition states:

Cloud-native technologies empower organizations to
build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds.

This definition has to broadly apply to everyone, but not everyone has the
same capabilities. This is known as the lowest common denominator problem.
It is where you try and appeal to a broader group and their capabilities, but in
doing so you also need to limit the capabilities that can be leveraged.

What is cloud-native? Why does it matter?

Amazon Web Services (AWS) goes many steps further
by providing a broad set of capabilities that belong to
a family called serverless. Serverless technologies are
more than just AWS Lambda—these services remove
the heavy lifting associated with running, managing,
and maintaining servers. This lets you focus on core
business logic and quickly adding value.

6© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.cncf.io/?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el

7© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 7

Everything
as a Service8.

As we cover the different capabilities your organization needs to acquire to go fully
cloud-native, it’s useful to view each one as a step in a journey.

The map below is a model for how organizations typically evolve their cloud-native
understanding. As your organization or team moves from stage to stage, you are gaining
capabilities that make releasing new features and functionality faster, better, and cheaper.
In the following sections, we’ll be focusing on the capability of Everything-as-a-Service.

Everything-as-a-Service (EaaS)
for cloud-native development

Applying a more
practical approach to
new products and services

Developers have long known that it’s more advantageous to assemble
or compose applications as opposed to building everything from scratch.
For example, in Java to do some mathematical calculations developers
simply import the Math class and use the required methods like sqrt, min,
max, etc. It would be a lot of work to create the Math class from scratch!
The time required to build using lower-level constructs is much greater
than taking an existing library or module and reusing it.

Besides time, when developers leverage existing constructs, most of
the issues and kinks have been worked out of them and they are usually
going to be much more efficient than something built from scratch.

While we build applications with this knowledge, we tend not to
extend this principle into new products or services. What this means is
that when we are building products or services, we start with lower-level
infrastructure components and add applications to support the functionality
we need. The problem with this approach is we end up duplicating efforts
across the organization, which affects cost and time to market, and adds
additional operational overhead to support the same functionality
across multiple teams.

8© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

9© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Evolution of the “as-a-Service” model

Let’s talk about the evolution and mindset shift in relation to the problem we just considered in the
previous section. The diagram below illustrates your progression as you move from an on-premises to
a SaaS model. By making this transition, you are effectively reducing the undifferentiated heavy lifting
of maintaining and managing infrastructure and certain pieces of software.

As you move from an on-premises model to an Infrastructure as a Service (IaaS) model, you gain
the same flexibility as if it were your infrastructure—minus the overhead of managing the premises,
power, security, virtualization, storage, networking, and other aspects of app development.

Platform as a Service (PaaS) further builds on the IaaS layer by adding abstractions that can be
leveraged by development teams. PaaS hides the complexities of dealing with operating systems,
middleware, and runtimes—and allows developers and operators to focus on writing and supporting
the application rather than the infrastructure.

Finally, Software as a Service (SaaS) refers to applications that are fully managed by the provider.
This means that organizations can purchase software licenses and immediately get to work without
any development, management of infrastructure, or installation. You can begin realizing value very
quickly, often without the involvement of IT.

Application

Data

Runtime

Middleware

OS

Virtualization

Server

Storage

Networking

Physical Location

On premises

Application

Data

Runtime

Middleware

OS

Virtualization

Server

Storage

Networking

Physical Location

IaaS

Application

Data

Runtime

Middleware

OS

Virtualization

Server

Storage

Networking

Physical Location

PaaS

Application

Data

Runtime

Middleware

OS

Virtualization

Server

Storage

Networking

Physical Location

SaaS

10© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

Benefits of
Everything-as-a-Service

Cloud-native and DevOps turn the way developers
approach and solve problems upside down. There is
no longer a need to manage and maintain servers as
was once necessary. Servers, patching, configuration,
and infrastructure should all be treated as fungible
components that don’t change in different environments
—new ones are simply deployed and a switch from the
old to the new is orchestrated. This is all made possible
with Cloud-Native, as everything developers need to
consume is accessible through an API.

To level that up even more, what if we thought of
higher-level services as APIs and solved problems by
composing services? If we do that, we have Everything
as a Service. A few examples of an organizational-level
service that is consumed include logging service, data
service, analytics service, reporting service, and so on.
In an organization, if you want to build a new service
you would simply consume other services in the
organization and build on top of those.

Another way to think of
this is building a platform
that is specific to the needs
of the organization that
can be consumed via
self-service APIs.

11© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Developing software today is like assembling a car with pre-built parts. Recent research highlights
that only 10 to 30 percent of code is custom and that 70 to 90 percent is open-source.* You can start
by exploring whether any services from Independent Software Vendors (ISVs) will fit your needs.

Rethinking development
with cloud-native

For example, if you need to process online payments for your e-commerce website, you simply use a
service acquired from an ISV such as Stripe. Or if you want to optimize delivery routes and reduce fuel
consumption, you can use Amazon Location Service. This style of development lets you focus on the
business logic so you can delight your customers by rapidly delivering new features. We will talk
about few more examples and patterns in a later section.

* https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on

Explore the services offered by your cloud provider.

If you run into any limitations such as cost or capabilities, try the next step.

Explore ISV services.

If you can’t find what you are looking for or run into limitations, try Step 3.

Explore internal services that are built by your own organization.

This is especially true for large enterprise organizations.

1
2
3

A best practice would be to adhere to the following order:

Only after you have exhausted all these options without solving your
problem would you then attempt to build a customized solution.

https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el

12© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Platform as a Service

The takeaway here is don’t rebuild what’s already available as a
service but do expose your business domain as microservices that
others within the organization can consume as a service.

It’s important to clearly understand what a platform is in the context of a cloud-native
world. In cloud-native, “platform” means anything that is not part of your business
domain. So, in a cloud-native world a foundational concept is to consume everything
that’s not part of your business domain as a service. This may already seem intuitive,
but in reality organizations seem to be trying to rebuild pieces of the platform.

Let’s look at an example. Say, you are developing an application that needs to send
emails. With this need in mind, it’s not uncommon for an organization to achieve this
by standing up an email server or servers, build a team to run, manage, and maintain
them, and call it a service. Then to use the service, they would open a ticket to the
email team requesting access to send email. This scenario may sound like it fits into
the realm of Everything-as-a-Service, but in reality, it’s an anti-pattern.

For starters, a service shouldn’t require tickets and manual approvals to start using it.
Consumption should be self-service. The other point, which is a big one, is that the
organization shouldn't be running, managing, and maintaining any platform services.
In cloud-native, virtually all platform services are provided by AWS or software and
services vendors.

What should be provided as a service are business domain-specific services. Between
AWS and AWS Partners, you are covered when it comes to platform services. There are
databases, messaging buses, queuing systems, API gateways, caching systems, storage,
testing, security, and many other services available. These platform services are very
robust and can scale, plus they are built on a time-proven foundation so you don’t
have to build from scratch and learn as you go.

12© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

13© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 13© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DevOps as a Service

From an organizational level, AWS recommends that DevOps be provided
as a service that other teams can consume. DevOps in this context would mean
build services, pipelines, deployment systems, Observability, and the repository.
You should not necessarily build these out, but they should be composed as
a collection of services that can span multiple teams.

From the services just mentioned, build services, deployment systems,
and Observability could be upstream services that the DevOps services are
composed of. For example, you get all the above-mentioned capabilities with
AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy, AWS CodePipeline for
your CI/CD needs, and Amazon CloudWatch for Observability. All these services
are fully managed by AWS and you don’t need to do the heavy lifting of
maintaining and managing them.

Fundamentally, the concept of Everything-as-a-Service is to
expose services that other teams within the organization can
consume. Examples include data services, event streaming
services, testing services, and others. Think of this as
abstraction and separation of concerns.

The different types
of “as a Service”

14© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Testing as a Service

Testing as a Service is a model in which testing activities associated with some of an organization's
business activities are performed by a service rather than named employees or a QA department.
In aligning with the theme of Everything-as-a-Service, this should be consumed via APIs that are
instrumented throughout the DevOps pipeline.

Another way to think about this is that, if your organization uses a specific test tool or suite, you
want to think about consuming that tool as a service. The team exposing that service should be
abstracting away all the heavy lifting associated with managing and maintaining that test suite.
Ideally, all the tests should be easy to define within the repository where the source code is stored.

Data as a Service

Data silos tend to arise naturally in large companies
because departments and teams often have their
own goals, priorities, and IT budgets.

But organizations of any size can end up with siloed
data if they are not intentional about addressing it.
Data as a Service is a way to break down data silos by
democratizing data. Data democracy does not mean
every employee needs to have access to every bit of
data that an organization has. Instead, it’s an ongoing
process of enabling everybody in an organization,
irrespective of their technical know-how, to work with
data comfortably, to feel confident talking about it,
and as a result, make data-informed decisions and
build customer experiences powered by data.

Having Data as a service enables this, as everyone will
have a central place to go to consume the data they need
regardless of whether they are a developer creating an app
or a business user that wants to create a dashboard.

Data as a
Service

Collecting &
processing

Internal &
external data

Service-oriented
architecture

14© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

15© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event Streaming as a Service

Event streaming is a sequence of continuous data points that originate from multiple
sources like transactions, IoT data, business metrics and operational metrics. Each data
point from a system is referred to as an event—a fundamental unit for stream processing.

Events have a repeating and evolving nature; hence the ongoing delivery of events is
referred to as a stream. As illustrated in the graphic below, event stream processing (ESP)
is when you combine streams of data together for real-time data delivery, which opens
new capabilities like real-time data processing and analytics. This is where the true
power of event streaming lies.

An anti-pattern often seen in organizations is that every team that needs a streaming
service ends up building one. This is something you should avoid by leveraging a fully
managed SaaS on AWS. For example, Confluent has reimagined Apache Kafka for the
cloud to accelerate development cycles by up to 70 percent and lower management
costs by up to 60 percent. We will get into more details about this later on in the ebook.

Traditional
Server

Mobile
Client

Client

AWS Lambda

Amazon EMR

Amazon Redshift

Amazon S3

Amazon DynamoDB

Amazon Kinesis
Firehose

15© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A few key features and capabilities of Amazon SageMaker to highlight:

Amazon SageMaker Studio is a fully integrated development environment (IDE) for ML, providing complete
access, control, and visibility into each step required to build, train, and deploy models. You can quickly upload
data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments,
compare results, and deploy models to production all in one place, making you much more productive.

Amazon SageMaker Pipelines is a purpose-built Continuous Integration/Continuous Delivery (CI/CD) service
for ML. Using Amazon SageMaker Pipelines, you can create ML workflows with an easy-to-use Python SDK,
and then visualize and manage your workflow using Amazon SageMaker Studio. You can be more efficient
and scale faster by storing and reusing the workflow steps you create in SageMaker Pipelines.

Amazon SageMaker Canvas generates accurate ML predictions with no code required. Amazon SageMaker
Canvas expands access to ML by providing business analysts with a visual point-and-click interface that allows
them to generate accurate predictions on their own, without requiring any ML experience or having to write
a single line of code.

Machine learning (ML) as a Service

At a high level, ML workflows involve preparing data: Building ML models, training and tuning them,
and finally deploying and managing those models. All this can become complex very quickly, spiral out
of control and cause significant expenditure.

Amazon SageMaker lets you build, train, and deploy ML models for any use case with fully managed
infrastructure, tools, and workflows. Amazon SageMaker is built on Amazon’s two decades of experience
developing real-world ML applications, including product recommendations, personalization, intelligent
shopping, robotics, and voice-assisted devices.

Prepare à Build à Train & tune à Deploy & manage à

àà

à
à

16© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

17© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contact Center as a Service

Amazon Connect is a simple-to-use, cloud-based contact center service that makes it easy to deliver better
customer service at a lower cost. Amazon Connect is based on the same contact center technology used
by Amazon customer service associates around the world to power millions of customer conversations.
Setting up a cloud-based contact center with Amazon Connect is as easy as a few clicks in the AWS
Management Console, and agents can begin taking calls within minutes.

Amazon Connect’s self-service graphical interface makes it easy for non-technical users to design contact
flows, manage agents, and track performance metrics—no specialized skills required. The service also
makes it possible to design contact flows that adapt the caller experience, changing based on information
retrieved by Amazon Connect from AWS services, like Amazon Redshift, or third-party systems, like CRM
or analytics solutions. You can also build natural language contact flows using Amazon Lex, an AI service
that has the same automatic speech recognition (ASR) technology and natural language understanding
(NLU) that powers Amazon Alexa.

Security as a Service

At large enterprises, security traditionally
means having a final gate before releasing code
to production. But often—under pressure from
business and competition—releases are pushed
to production accepting a certain amount of risk.

Security should be integrated at every step
throughout the application development and
delivery lifecycle. And this is only possible if
security is offered as a service and can be
triggered at any point either by the CI/CD
pipeline or manually on-demand by developers.

Security services need to provide immediate
feedback to developers with IDE integration
while they still have the context of writing that
piece of code. Security teams should only focus
on configuring policies and guardrails and not
worry about managing and maintaining the
infrastructure and tooling.

Security services like static code analysis,
static application security testing (SAST), dynamic
application security testing (DAST), software
composition analysis, and others are continuously
evolving in ways internal security teams simply
can’t keep up with. Instead, leverage security
services offered by AWS and AWS Partners.

18© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 18

Start identifying and
building your service

So, we’ve learned some basic concepts that apply
to external platform services. But it’s important to
not just think about what third parties are offering
as services—introspect as an organization and identify
what internal solutions can be offered as a service for
your teams and operate them like third-party tools.

We’ll cover best practices for making this a reality
in the following sections.

18© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

19© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 19© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A lesson learned from Amazon’s own engineering
practice is the concept of a two-pizza team. A two-
pizza team is small, autonomous team—small
enough that it could be fed with only two pizzas.
Each two-pizza team is focused on a specific product,
service, or feature set, giving them more authority
over a specific portion of the application. This turns
developers into product owners who could quickly
make decisions that affect their individual product.

Use building blocks

It’s been mentioned already, but it can’t be overstated that services need to be composed of other
services. To gain speed and agility, the organization needs to focus its talent pool on building on
top of what is already available to them. Don’t try and build another service to replicate existing
functionality. Doing so does not add business value to the organization.

Teams own everything In the context of Everything-
as-a-Service, each service is
being built by a two-pizza
team. In the context of
Platform as a Service,
each two-pizza team
offers their service for
other teams to consume.

Building blocks that make up services

20© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The diagram below illustrates a modern architecture. Yes, it does indeed look a lot like a three-tier
architecture. There are a lot of the same elements here, like data, logic, and presentation layers.
But there are also a few key differences.

Decoupled architecture

1. What you are looking at here is a single microservice—this service performs a specific
business function and many AWS customers run dozens, hundreds, or even thousands of
these kind of services to improve scalability and resilience.

2. Integration and communication—this architecture leverages a combination of events,
messages, and queues that enable communication within the microservice, as well as APIs
to communicate between services.

3. A purpose-built data strategy—rather than a single database, three are illustrated here,
the point being that you can choose the data store that is the best fit for your specific need.

4. Versioning—what you can’t see in this diagram is how you store state, an important
consideration if you’re running functions or containers.

Presentation

Business logic

Data

Events Events

APIs

Queues/messages

21© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prioritize an Everything-as-a-Service approach

Today’s enterprise revolves around a unique
catalogue of services, so why should its IT services
be any different? The IT department takes on
the responsibility of providing a best-of-breed
portfolio of services: Managed and optimized for
service consumption, security, agility, reliability,
responsiveness, service levels, and cost across
multiple providers—some internal and others
external to the organization. IT departments can
move away from managing technology and costs
to managing services and outcomes, allowing
it to dictate a unique ‘services’ roadmap rather
than being dictated to by technology limitations
or tool vendors.

For EaaS to be successful, the products upon
which the services are offered must be architected
for EaaS. Furthermore, the organization’s own
digitized demands will require services to be built
on products modelled on needs unique to the
business and its first-level customer base, such as
the need for availability, performance, and security.

Start a small project or new app as a cloud-native
project, serverless as a compute option, and use
existing building blocks likes API gateway. For EaaS
to be successful, the products upon which the
services are offered must be architected for EaaS.

Benefits of using EaaS

• Faster time to delivery

• Scalability

• Cost savings on infrastructure and licensing

• Better utilization of resources

• Customized for the needs of the organization

• Knowledge sharing between teams

Build as a product,
offer as a service

In a build-as-product mindset, the
architect and designer must follow a
strict product management discipline
and design approach to build a
configurable product that can satisfy
a changing environment, incorporating
the need for continuous improvement.

Build where you must,
acquire where you can.

By adopting a controlled EaaS practice,
organizations can choose the best of both
worlds. How? By providing services around
acquired products that are not only cost-
effective, efficient, and flexible but also
built with design principles that offer
resiliency and continuous improvement.

22© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 22© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

One of the important benefits of AWS Lambda is
that it responds to data in near-real time, and as
customers create more data streams, a serverless
approach to processing data is attractive.

Nielsen Marketing Cloud is doing this on an
incredibly high scale. It’s using AWS Lambda to
process 250 billion events per day—all while
maintaining quality, performance, and cost using
a fully automated serverless pipeline. On a peak
day, Nielsen receives 55 TB of data with 30 million
Lambda invocations and their system manages it
with no problem. Recently, they had up to 3,000
AWS Lambdas running concurrently.

Nielsen Marketing Cloud:
High scale, low operations

Files Ad network

Amazon SQS

Amazon RDS

Amazon
S3

Amazon
EMR

Amazon SQS

Amazon
S3

As you can see in the diagram below, they
leveraged many “as a service” capabilities such as:

• AWS Lambda

• Amazon SQS for queues

• Amazon Relational Database Service
(Amazon RDS)—a fully managed relational
database service

• Amazon Simple Storage Service (Amazon S3)

• Amazon EMR for its cloud big data platform
(EMR now also has a serverless option)

Leveraging these tools allows Nielsen to focus
their efforts on building business logic rather
than building and maintaining services.

• Processes up to
55 TB of data per day

• 250 billion events per day

• Up to 3,000 concurrent
Lambda functions

• Consistent performance
at any scale

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 23

What Everything-as-a-Service is

and why you should adopt it as your
app development approach

How to express all services as APIs

and decoupled architectures

Benefits of the EaaS model

such as resource optimization,
cost savings, and time to market

Here are few important concepts to take away from what has been covered so far:

How cloud-native development
resembles a car assembly line

where pre-configured modules are bolted
together to build and deliver cars quickly

Common services like
IaaS, PaaS, and SaaS;

and a few not-so-common services such
as DevOps as a service, Data as a Service,
ML as a Service, and more

How to best organize your team

when building internal services to be
offered as a service to the rest of the
organization

Key takeaways for Everything-as-a-Service

24© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 24

In this section, we’ll look at some of the best-fit tools you could use to achieve the tenets discussed in
the previous section. At AWS, we’ve long been believers in enabling builders to use the right tool for the
job—and when you build with AWS, you’re provided with choice. You can build using the native services
AWS provides or use AWS Marketplace to acquire third-party software offered by AWS Partners to take
away the heavy lifting and allow your development teams to focus on delivering value to customers.

Let’s take a deeper look at three key components at this stage of your cloud-native journey: infrastructure
designed to connect all the applications, systems, and data layers; an API layer to front your application
and expose it as a service to other applications and systems; and a feature-rich platform to build on and
from which to quickly launch the service to end customers

Tools for building cloud-native

Plan Build ReleaseTest OperateSecure

Adding development capabilities with AWS Marketplace

Sample AWS and AWS Marketplace solutions
3,000+ vendors | 13,000+ products

AWS CodeDeploy

Amazon
EKS

Amazon
CloudWatch

AWS Lambda

Amazon
EventBridge

Amazon
Kinesis

Amazon
DynamoDB

AWS CodeCommit

AWS Cloud9

AWS Device
Farm

Find, try, and acquire tools across the DevOps landscape for building cloud-native applications

CodeCatalyst

24© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Marketplace is a cloud marketplace that makes it easy to find, try, and acquire the tools you need
to build cloud-native. More than 13,000 products from over 3,000 Independent Software Vendors are
listed in AWS Marketplace—many of which you can try for free and, if you decide to use, will be billed
through your AWS account.

https://aws.amazon.com/marketplace/solutions/devops?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el
https://aws.amazon.com/marketplace/solutions/devops?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el

25© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 25© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example streaming service

The below diagram illustrates an example of a streaming service that aligns with all the best practices
we’ve discussed so far.

This example shows how you can decouple streaming from other services, allowing teams to move faster
as streaming data becomes a service they can consume versus trying to build.

The example is built to handle different client devices that connect into Kong’s API gateway. Kong not only
authenticates the connection but also applies rules and policies to wrap service-level agreements (SLAs)
around the different service connections. Once Kong applies these rules, the connection is sent off to the
Confluent Cloud, which is running a managed Kafka service that processes the payload data and connects
that data to data stores such as Amazon S3, Amazon Aurora, and Amazon DynamoDB, which can be further
consumed by analytic services such as Amazon Athena and Amazon QuickSight.

Staying true to the Everything-as-a-Service theme, the entire platform can be self-serviced through
an internal facing Kong API that allows developers and other teams to request additional streams and
publishing to other data destinations.

AWS Cloud

Streaming service

Data Analytics

Amazon S3

Amazon Aurora

Amazon DynamoDB

Amazon Athena

Amazon QuickSight

New stream request

Engineers Business
Users

Kong API Gateway

Rate limiting

Caching

API keys

Amazon
Cognito

Auth

Other
service teams

Data stream

Kong API Gateway

Confluent Cloud
(Kafka)

STREAM SERVICE CONTROL PLANE

IoT sensor

Mobile client

Client

Generic data

26© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 26© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Confluent and Kong

Before diving any deeper into the example architecture, let’s look at the two components mentioned earlier.

Try it with AWS Marketplace ›

Watch a demo ›

Start a hands-on lab ›

Confluent improves on Apache Kafka’s event-streaming platform
by providing additional community and commercial features designed
to enhance the streaming experience of both operators and developers
in production, at massive scale. Confluent's cloud-native, complete, and
fully managed service goes above and beyond Kafka, so your best people
can focus on what they do best, delivering value to your business.

Kong offers open-source platforms and cloud services to manage,
monitor and scale APIs and microservices. The main products offered are:

• Kong Gateway: An open-source API gateway

• Kong Enterprise: An API platform built on top of Kong Gateway

• Kong Konnect: A service connectivity platform

• Kong Mesh: An enterprise-grade service mesh built on top of
open-source Kuma

• Kong Insomnia: An open-source API design and testing tool

Try it with AWS Marketplace ›

Kafka’s core
features are:

Kuma:

• Publish and subscribe to a stream of events
• Store your event streams
• Process and analyze your event streams

Kafka Connect Kafka Connect

Kafka cluster

Other
systems

Other
systems

Kuma is a single and multi-zone connectivity tool that
provides support for modern Kubernetes environments
and virtual machine workloads in the same cluster

https://aws.amazon.com/marketplace/pp/prodview-g5ujul6iovvcy?trk=e1d59c4f-ace3-4b54-925b-27248f6cb917&sc_channel=el
https://pages.awscloud.com/awsmp-mss-confluent-cloud-apache-kafka-on-aws-marketplace.html?trk=e1d59c4f-ace3-4b54-925b-27248f6cb917&sc_channel=el
https://confluent.awsworkshop.io/?trk=e1d59c4f-ace3-4b54-925b-27248f6cb917&sc_channel=el
https://aws.amazon.com/marketplace/pp/prodview-7zds3oxx3ntjy

27© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 27© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hybrid cloud API gateway architecture

Going back to our example streaming services: The Kong solution has two components—Control Plane
and Data Plane. Kong’s Control Plane is deployed in AWS Cloud in its own subnet and uses Amazon RDS
as a backend database to orchestrate the Data Planes. The Kong Data Plane is deployed on both the
AWS Cloud and an on-premises environment. The Data plane acts as a frontend to the microservices
and is exposed to the end users as shown above. This solution can deliver independently to cloud-
native customers as well as to on-premises customers.

In the example above, an AWS Direct Connect is used to connect an on-premises environment
to a Kong Control-Plane on AWS. The Data Planes are distributed to multiple locations to provide
scalability and availability. Kong takes care of managing and maintaining the infrastructure so you
can focus on building the business logic and application.

A typical installation of Kong Enterprise on Amazon EKS involves installing the Kong Control Plane
and Data Plane on one or more clusters across multiple Availability Zones or AWS Regions. Plugins
provide advanced functionality to extend the use of Kong Gateway. In the example, Kong’s plugins
send logs to Amazon CloudWatch, authenticates users via Amazon Cognito, and provides access
for streaming data to the Confluent Cloud.

AWS Cloud

Region

VPC

Admin users

Corporate data center

Microservices

API
Gateway

API
Gateway

API
Consumers

Amazon
Cognito

Amazon
CloudWatch

Kong

Kong

Confluent Cloud
(Kafka)

database

Kong plugins

Kong
(Control
Plane)

Amazon RDS

AWS Directory
Service

API
consumers

28© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 28© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kong’s API Gateway

The value of Kong’s API gateway is the ability to easily add authorization, load balancing, rate limiting,
caching, circuit-breaking, and data transformations without having to write this logic into code. With
Kong API Gateway, you get this functionality and many more through a rich set of plugins.

Client

gRPC

JSON Over
HTTP

Database

Kong

Authentication

Logging

Metrics

Caching

Serverless

Load-balance

Circuit-break

Rate-limiting

Transformations

Custom logic

29© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 29© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kong Mesh for connectivity

As services expand, they’ll need to communicate with each other. That’s
where a service mesh comes into play. Kong Mesh enables services that make
up Everything-as-a-service within an organization to seamlessly communicate.

Data stream
Service Mesh A

Authentication
Service Mesh B

Product scope

Data center 1

Data Service
Mesh A

Analytics
Service Mesh B

Product scope

Data center 2

Kong GatewayKong Gateway

Kong Mesh

Kong Gateway

Client

Edge

For the example solution, Kong Gateway and Kong Mesh give us:

• Out-of-the-box service connectivity and discovery

• Zero-trust security—each service is independent,
and both the data stream service and analytics
service are both consuming authentication

• Traffic reliability—the mesh ensures that
traffic is routed to an available service whether
that is in the same Availability Zone, different
Availability Zone, or even a different Region

• Global Observability across all traffic,
including cross-cluster deployments and
hybrid deployments of on-premises and cloud

30© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 30© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Confluent Cloud

In the example solution on the next page, Confluent Cloud is a fully managed
Apache Kafka on AWS, which helps organizations focus on building apps and not
managing clusters with a scalable, resilient, and secure service. With Confluent Cloud,
you can connect to your existing data services to build real-time, event-driven applications
with managed connectors to Amazon S3, Amazon Aurora, Amazon DynamoDB, and more.

Confluent Cloud is a hybrid solution connecting applications across both on-premises
and AWS Cloud.

Confluent and Apache Kafka

Let’s transition now to Confluent.

What is Kafka? Kafka is a distributed data store optimized for ingesting and processing
streaming data in real-time. Streaming data is data that is continuously generated
by thousands of data sources, which typically send the data records simultaneously.
A streaming platform needs to handle this constant influx of data and process the
data sequentially and incrementally. Kafka provides three main functions to its users:

Kafka is primarily used to build real-time streaming data pipelines and applications
that adapt to the data streams. It combines messaging, storage, and stream
processing to allow storage and analysis of both historical and real-time data.

Publish and
subscribe
to streams
of records

1 Effectively store
streams of records
in the order in which
records were generated

2 Process
streams of
records in
real time

3

31© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

In the above example, Confluent takes data streamed in from mobile clients, servers, desktops, IoT sensors,
and other generic data and streams those into Kafka as source connectors. Sink connectors are used to
connect that data to data storage targets such as Amazon S3, Amazon Aurora, and Amazon DynamoDB.

In the example solution, the data storage service is decoupled from the data service. Implementing the
streaming service in this fashion allows us to focus on the needs of the organization for streaming services
and expand those capabilities to support current and future company products and service.

The methodology of separating these services also allows teams to compose products from different services
instead of trying to reinvent the wheel and duplicating efforts associated with building a stream service.

AWS Cloud
Data Analytics

Mobile client

Client

IoT sensor

Amazon S3

Amazon Aurora

Amazon DynamoDB

Amazon Athena

Amazon QuickSight

Confluent Cloud
(Kafka)

Generic data

InternetCorporate

Mobile client

Client

IoT sensor

Generic data

Source
connector

Sink
connector

Engineers Business
users

Other service
teams

Three modalities of
stream processing
with Confluent

1. Through Kafka Clients: The Confluent platform includes client libraries
for multiple languages to provide both low-level and higher-level
access. Some of those include Java, C++, Go, .NET, Python, and Nodejs.

2. Through Kafka Streams: Kafka Streams is a client library for building
applications and microservices, where the input and output data are
stored in an Apache Kafka cluster.

3. KsqlDB: ksqlDB is a database purpose-built to help developers create
stream processing applications on top of Apache Kafka.

32© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Data and
Analytics services

So far, we’ve talked about Kong for the API Gateway and
Mesh, and Confluent for event stream processing with Kafka.
Here are a few AWS services to note:

Amazon S3 is a general object store and also a
destination target for the data stream solution.
Amazon S3 is used in this solution as it is a great
long-term storage service that can be used directly
by Amazon Athena and Amazon QuickSights for
analytics processing and report generation.

Amazon DynamoDB is a NoSQL service that
is fully managed with single-digit millisecond
performance at any scale. In the event stream
service, as streams of information are coming
into Confluent Cloud, updates to a user’s profile
can be made in near-real time to DynamoDB.
As an example event stream: A shipping company
could be receiving real-time updates of a package
location and part of the stream processing jobs
could update the DynamoDB table on where
the package is currently at based on this
stream of information.

Amazon Aurora is a relational database
management system (RDBMS) service that
provides SQL access to the data tables of the
event stream. Aurora complements the solution
as there are use cases that require quick access
to data for analytical processing. Aurora is highly
scalable, highly durable, and fully managed.

Both Amazon Athena and Amazon QuickSight are
part of the analytics service in the example solution.
Amazon Athena provides a SQL interface to data
stored on Amazon S3 and Amazon QuickSight is a
dashboard, reporting, and visualization tool that
leverages data from Amazon S3, Amazon Aurora,
and Amazon DynamoDB.

Amazon S3

Amazon DynamoDB

Amazon Aurora

Amazon Athena

Amazon QuickSight

32© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why Kong and Confluent for the solution?

AWS understands the complexities that enterprises have to deal with and therefore looked for services
that could support these different facets. Services often straddle many different environments, locations,
and clouds. So the services were chosen to account for this complexity. There is also a need to make sure
to stay true to the Everything-as-a-Service theme by providing platforms that companies could build
upon while reducing the overhead of having to manage and maintain additional lower-level services.

Kong in particular provides the centralized control plane where the API can be managed and supports
highly scaling not only the API connections but also the number of APIs and gateways that are supported.
The Everything-as-a-Service philosophy will exponentially expand the number of APIs used and the idea
is to make sure that doesn’t become taxing on the teams that need to support them.

And Confluent was chosen because no one wants to get in the business of having to manage and maintain
clusters of Kafka servers. It is a lot of work, having to spin up new clusters, backups, patching, and all the other
things that go into maintaining a highly reliable and performant service. Let the heavy lifting of the lower-level
components be done by someone else so the streaming service team can focus on providing products that the
rest of the organization can consume. Confluent Cloud automatically scales and is managed for you.

AWS Cloud

VPC

Dev

Engineers Git
Repo

Fail – Notify engineer
QA

Prod

Configuration

DevOps Pipeline

RELEASETESTBUILD
Kong API
Gateway

Confluent
Cloud (Kafka)

Kong API
Gateway

Confluent
Cloud (Kafka)

Kong API
Gateway

Confluent
Cloud (Kafka)

33© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CI/CD for
streaming
service

All of the services mentioned—including Kong and Confluent Cloud—all support
automated build, test, deployment, and management through a CI/CD pipeline.
Having a robust CI/CD pipeline for a service unlocks a team’s speed and agility.
Having fast feedback for changes of the service is important and allows
developers to spend more time developing features and functionality
versus shepherding releases to production.

34© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 34© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• You leveraged the Kong API management
platform and Kong Mesh to expose the entire
application as a service for both external
producers and internal users.

• You leveraged Apache Kafka through a managed
platform from Confluent Cloud to connect all the
applications and data layers to other services that
consume that data such as Amazon S3, Amazon
Aurora, and Amazon DynamoDB. Downstream
from the data service is an analytics service that
consumes the data streamed to the data service.

Example streaming service recap

All of these services are SaaS
offerings on AWS to abstract
away the heaving lifting of
managing and maintaining
servers and infrastructure so
you and your team can focus
on adding business value.

AWS Cloud

Streaming service

Data Analytics

Amazon S3

Amazon Aurora

Amazon DynamoDB

Amazon Athena

Amazon QuickSight

New stream request

Engineers Business
Users

Kong API Gateway

Rate limiting

Caching

API keys

Amazon
Cognito

Auth

Other
service teams

Data stream

Kong API Gateway

Confluent Cloud
(Kafka)

STREAM SERVICE CONTROL PLANE

IoT sensor

Mobile client

Client

Generic data

Now that you’ve absorbed quite a bit of information, return to the example
solution below and see how it operates with new eyes. To sum it up:

35© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 35

AWS Marketplace
Third-party research has found that customers
using AWS Marketplace are experiencing an
average time savings of 49 percent when needing
to find, buy, and deploy a third-party solution.
And some of the highest-rated benefits of using
AWS Marketplace are identified as:

Over 13,000 products from 3,000+ vendors:

Buy through AWS Billing using
flexible purchasing options:

• Free trial
• Pay-as-you-go
• Hourly | Monthly | Annual | Multi-Year
• Bring your own license (BYOL)
• Seller private offers
• Channel Partner private offers

Deploy with multiple deployment options:

• AWS Control Tower
• AWS Service Catalog
• AWS CloudFormation (Infrastructure as Code)
• Software as a Service (SaaS)
• Amazon Machine Image (AMI)
• Amazon Elastic Container Service (ECS)
• Amazon Elastic Kubernetes Service (EKS)

Part of the reason for this is that AWS
Marketplace is supported by a team of solution
architects, security experts, product specialists,
and other experts to help you connect with the
software and resources you need to succeed
with your applications running on AWS.

Cloud readiness
of the solution

Time to value

Return on
Investment

Confluent Cloud and Kong can be used together along with AWS to establish a well-engineered approach
to EaaS. Gaining these capabilities can provide a strong foundation for continuing to advance through your
cloud-native journey. You can explore these and other DevOps tools in AWS Marketplace.

To get started, visit: https://aws.amazon.com/marketplace/solutions/devops

Continue your journey with AWS Marketplace

https://aws.amazon.com/marketplace/solutions/devops?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el

36© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visit aws.amazon.com/marketplace to find, try and buy
software with flexible pricing and multiple deployment
options to support your use case.

https://aws.amazon.com/marketplace/solutions/devops

Get started today

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Authors:

James Bland
Global Tech Lead for DevOps, AWS

Aditya Muppavarapu
Global Segment Leader for DevOps, AWS

http://aws.amazon.com/marketplace?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el
https://aws.amazon.com/marketplace/solutions/devops?trk=26dd2db7-3656-4cff-8815-0e3e8d229f1a&sc_channel=el

